矩阵分析
文章平均质量分 67
以《矩阵分析与应用》-张贤达为蓝本
你回到了你的家
这个作者很懒,什么都没留下…
展开
-
1.2 矩阵与线性方程组-向量空间、内积空间与线性映射
2 向量空间、内积空间与线性映射2.1 几何的基本概念2.2 向量空间待补充 32 34原创 2021-11-05 00:36:22 · 145 阅读 · 0 评论 -
二、特殊矩阵
一、对称矩阵、Hermitian矩阵与循环矩阵对称矩阵AAA是一个其元素aija_{ij}aij关于主对角线对称的实正方矩阵,即有:AT=A或aij=aji(2.1.1)A^T=A\quad或\quad a_{ij}=a_{ji}\quad\quad\quad\quad\quad(2.1.1)AT=A或aij=aji(2.1.1)2 基本矩阵3 置换矩阵、互换矩阵与选择矩阵4 正交矩阵与酋矩阵向量x1,x2,…,xk∈Cnx_1,x_2,\dots,x_k\in C^n原创 2021-11-05 00:00:42 · 197 阅读 · 0 评论 -
对矩阵乘法的理解
一、高斯消元法与矩阵乘法1.1 矩阵乘法:对于:它表达了两个过程:第一行不变:r1′=r1r_1'=r1r1′=r1第二行改变:r2′=r2−3r1r_2'=r_2-3r_1r2′=r2−3r1用矩阵乘法可以表示为:1.2 矩阵乘法与高斯消元法利用矩阵乘法,整个高斯消元法可以表示如下:所以对于方程:(123345)\begin{pmatrix}1&2&3\\3&4&5\end{pmatrix}(132435)我们得到了如下的答案:原创 2021-11-03 17:55:46 · 691 阅读 · 0 评论 -
1.1 矩阵与线性方程组-矩阵的基本运算
一、矩阵的基本运算1.1 矩阵与向量一个n×nn\times nn×n正方矩阵AAA的主对角线是指从左上角到右下角沿i=j,j=1,2,…,ni=j,j=1,2,\dots,ni=j,j=1,2,…,n相连接的线段。位于主对角线上的元素称为AAA的对角元素。矩阵AAA从右上角到左下角相连接的线段称为矩阵AAA的交叉对角线(也称次对角线)。主对角线以外元素全部为零的n×nn\times nn×n矩阵称为对角矩阵,记作:D=diag(d11,d22,…,dnn)(1.1.8)D=diag(d_{11}原创 2021-09-24 15:37:14 · 868 阅读 · 0 评论 -
四、矩阵的变换与分解
一、Householder变换许多时候我们希望将矩阵变换为上三角矩阵或下三角矩阵。以4×44\times44×4矩阵为例,希望变换结果为:一般情况下,要求旋转矩阵PPP满足条件:PJPH=J(4.1.1)PJP^H=J\quad\quad\quad\quad\quad(4.1.1)PJPH=J(4.1.1)其中:或者为符号矩阵。1.1 Householder变换与Householder矩阵/待补充 222...原创 2021-09-24 15:24:32 · 455 阅读 · 0 评论 -
八、特征分析
一、特征值问题与特征方程Aμ=λμ,μ≠0(8.1.1)A\mu=\lambda\mu,\quad\quad \mu\ne0\quad\quad\quad\quad(8.1.1)Aμ=λμ,μ=0(8.1.1)T(x)=λx(8.1.2)T(x)=\lambda x\quad\quad\quad\quad(8.1.2)T(x)=λx(8.1.2)原创 2021-09-24 15:17:58 · 1043 阅读 · 0 评论 -
五、梯度分析与最优化
一、梯度与无约束最优化无约束最优化问题的数学描述:minx∈Rf(x)\min\limits_{x\in\mathbb{R}}f(x)x∈Rminf(x)1.1 目标函数的极小点如果函数f(x)f(x)f(x)具有连续的二阶导,那么在xxx的一个很小的邻域Δx\Delta xΔx内,就可以用泰勒展开:f(x+Δx)=f(x)+f′(x)Δx+12f′′(x)(Δx)2+…f(x+\Delta x)=f(x)+f'(x)\Delta x+\frac{1}{2}f''(x)(\Delta x)^2原创 2021-09-24 15:12:57 · 793 阅读 · 0 评论 -
2.1 对称矩阵与反对称矩阵
对称矩阵AAA是一个其元素aija_{ij}aij关于主对角线对称的实正方矩阵,即有:AT=A或aij=aji(2.1.1)\quad A^T=A \quad或\quad a_{ij}=a_{ji}\quad\quad\quad\quad (2.1.1)AT=A或aij=aji(2.1.1)对称矩阵具有以下性质,若AAA和BBB都是对称矩阵,则AT=AA^T=AAT=A,且A−1,AmA^{-1},A^mA−1,Am(m为正整数)和A+BA+BA+B仍是对称矩阵。满足条件AT=−AA^T=-AA原创 2021-03-14 10:09:10 · 7754 阅读 · 0 评论 -
线性代数-线性转化和矩阵
2spanthe span of v→\overrightarrow{v}v and w→\overrightarrow{w}w is the set of all their linear combinations.av→+bw→a\overrightarrow{v}+b\overrightarrow{w}av+bwLet aaa and bbb vary over all real numbersbasisthe basis of a vector space is a set of lin原创 2020-09-25 15:09:40 · 1818 阅读 · 0 评论 -
矩阵知识:线性方程组解的情况
一、线性方程组解的情况1.1 非齐次线性方程组非齐次线性方程组,就是方程组的等式右边不为0的方程组,系数加上方程等式右边的矩阵,叫做增广矩阵假定对于一个含有n个未知数m个方程的非齐次线性方程组而言,若n<=m,则有:当方程组的系数矩阵的秩和方程组的增广矩阵的秩相等且均等于方程组中未知数个数n的时候,方程组有唯一解当方程组的系数矩阵的秩与方程组增广矩阵的秩相等且均小于方程组中未知数个数n的时候,方程组有无穷多解当方程组的系数矩阵的秩小于方程组增广矩阵的秩的时候,方程组无解当n>m原创 2020-06-16 07:52:16 · 23532 阅读 · 0 评论 -
矩阵知识:伴随矩阵
一、伴随矩阵1.1 定义1.2 定理利用伴随矩阵求矩阵的逆矩阵的一个例子原创 2020-06-15 22:19:39 · 39519 阅读 · 4 评论 -
矩阵的特征值及特征向量理解
一、特征值&特征向量1.1 直观印象如果把矩阵看作是运动,对于运动而言,最重要的是运动的速度和方向,那么:特征值就是运动的速度特征向量就是运动的方向既然运动最重要的两方面都被描述了,特征值、特征向量自然可以称为运动(矩阵)的特征。注意:由于矩阵是数学概念,非常抽象,所以上面所谓的运动、运动的速度、运动的方向都是广义的,在现实中有不同的替代。1.1.1 几何意义在下面的图中画出了基和向量(在i→,j→\overrightarrow{i},\overrightarrow{j}i,j原创 2020-06-05 14:07:44 · 3281 阅读 · 0 评论 -
矩阵知识:正交矩阵、行列式、子式与代数余子式
一、正交矩阵1.1 RnR^nRn的标准正交基1.1.1 定义1Rn中的n个向量η1,η2,...,ηn满足:R^n中的n个向量\eta_1,\eta_2,...,\eta_n满足:Rn中的n个向量η1,η2,...,ηn满足:(1)两两正交:ηiTηj=0(i≠0)(1)两两正交:\eta_i^T\eta_j=0(i\ne0)(1)两两正交:ηiTηj=0(i=0)(2)都是单位向量,即∣∣ηi∣∣=1,i=1,2,...,n(2)都是单位向量,即||\eta_i||=1,i=1,原创 2020-06-09 08:53:30 · 5943 阅读 · 0 评论 -
矩阵知识:线性变换、相似矩阵、对角矩阵、逆矩阵
一、相似矩阵定义:设A,BA,BA,B都是n阶矩阵,若有可逆矩阵PPP,使:则称BBB是AAA的相似矩阵,或者说AAA和BBB相似。1.1 线性变换:首先从函数说起1.1.1 线性函数:函数直观的讲,就是把x轴上的点映射到曲线上,如下图正弦函数所示:还有的函数,比如y=x,是把x轴上的点映射倒直线上,这种称之为线性函数:1.1.2 从线性函数倒线性变换:线性函数其实就是线性变换,为了看起来更像线性变换,这里换一种标记方法:之前的y=x,可以认为是把(a,0)(a,0)(a,0)映原创 2020-06-06 10:09:28 · 6152 阅读 · 0 评论 -
矩阵的二次型,矩阵的迹、正定矩阵、Hessian矩阵、实对称
向量空间:向量空间Rn由所有的n维向量v组成,向量中的每个元素都是实数。向量空间R2可以用xy平面来表示,其中的每个向量有两个元素,它们定义了平面上一个点的坐标。向量空间的性质:在一个向量空间中,如果我们将任意向量相加或者乘以一个标量,也就是任意向量的线性组合,它们的结果仍然在这个向量空间中。https://zhuanlan.zhihu.com/p/50066691欧式空间:欧几里得空间就是在对现实空间的规则进行抽象和推广(从n<=3推广到有限n维空间)欧几里得几何就是中学学的平面几原创 2020-05-26 20:04:46 · 11472 阅读 · 0 评论 -
矩阵知识:秩
一、矩阵的秩1.1 秩的定义设A=(aij)m∗n,有r阶子式不为0,任何r+1阶子式(如果存在的话)全为0,称r为矩阵A的秩,记作R(A)设A=(a_{ij})_{m*n},有r阶子式不为0,任何r+1阶子式(如果存在的话)全为0,称r为矩阵A的秩,记作R(A)设A=(aij)m∗n,有r阶子式不为0,任何r+1阶子式(如果存在的话)全为0,称r为矩阵A的秩,记作R(A)1.2 矩阵秩的求法1.2.1 子式判别法(利用定义)例子:A=(123001010010)A=\begin{pmatr原创 2020-06-10 08:30:21 · 6387 阅读 · 0 评论