论文
你回到了你的家
这个作者很懒,什么都没留下…
展开
-
Non-local Neural Networks
传统的循环神经网络和卷积神经网络都是构造一次只能处理一个较小区域(这个区域可以理解为一段文字中的一句话-时间,或一片相邻的像素-空间,或者一段视频中相邻的帧-时间和空间相结合)的网络块,循环神经网络(例如LSTM等模型)捕捉一定时间范围内的相关性,卷积神经网络捕捉一定空间范围内的相关性。如果最终的判断需要一个相对较长区域的相关性,那么这两种传统的方式都是通过不断堆叠处理较小区域的网络块来最终达到,...原创 2020-02-07 20:40:19 · 687 阅读 · 0 评论 -
ResNeXt
ResNeXt是结合了ResNet和Inception两个模型产生的新模型,在与ResNet复杂度相同的情况下提高了精度,同时通过堆叠相同的神经网络块,减少了超参数量,和Inception模型比较有更少的超参数需要调整。ResNeXt提出了一个新的维度,叫cardinality,类似Inception模型,ResNeXt将原来维度较大的网络分成很多个平行的且维度较小的网络去处理,最后将这些较小维度...原创 2020-02-06 11:16:54 · 363 阅读 · 0 评论 -
ResNet 残差神经网络
当类似VGG结构的网络层数过深的时候会产生退化,如下图所示,56层的网络效果要比20层的差,ResNet的提出就是解决退化问题,继续加深网络层数。ResNet的基本思想是将原来一层一层堆叠在一起的网络结构变换成一种新的结构,这个结构如下所示右部的含义是直接将输入按照原样映射到输出,左部分就和VGG一样是堆叠的卷积层等,新的网络结构可以这样去理解,假设原来的网络不包含左部分,仅包含右部分,这...原创 2020-02-01 11:51:19 · 700 阅读 · 1 评论