classifier - related paper

1.< malware detection based on deep learning algorithm> -Ding yuxin Zhu siyi

Deep belief network :基础框架 Restricted Bolizmann Machine RBM 受限玻尔兹曼 机。前层有 autoencoding 的功能能够有效的将数据的基础结构表现出来,并能降低特征向量的维度。

2.< Generative Malware outbreak Detection> Sean Park , Iqbal Gondal

HDBSCAN: 带有应用程序噪音的基于层次密度的空间聚类

3.< A hybrid deep learning image-based analysis for effective malware detection>-Sitalakshmal Venkatraman, Mamoun Alazab ,R.Vinayakumar

CNN + bi-directional pipline deep learning,
SVM machine learning,
k-mean聚类

4.< Dynamic data fusion using multi-input models for malware classification>

LSTM+Dense 1,两特征各单独使用。2,双特征通过LSTM得到的结果,混合后通过softmax Dense层 3.得到最后两个结果,链接变为一个数组后后使用Softmax 层后的最后结果。

5.< An improved Method for Packed malware Detection using PE Header and Section Table information>

DT decision tree,寻找规则

6.< Improvement of malware detection and classification using API call sequence alignment and visualization >

1.聚类:为了生成恶意软件家族(不使用聚类,会在MSA进一步小型分类时,会产生噪音)
三步的聚类机制:1.按决策树划分(weka C4.5)
2.MSA(multiple squence alignment) :使用工具 clustalx ,jalview
用于细分,将聚类的分组细分,组合小组,形成模型
3.分类 similarity-SW ; similarity-LCS
结果 94%, 同时使用可视化的

7.< A mobile malware detection method using beharior features in network traffic >

利用信息增益比 C4.5 97.89%

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值