1.< malware detection based on deep learning algorithm> -Ding yuxin Zhu siyi
Deep belief network :基础框架 Restricted Bolizmann Machine RBM 受限玻尔兹曼 机。前层有 autoencoding 的功能能够有效的将数据的基础结构表现出来,并能降低特征向量的维度。
2.< Generative Malware outbreak Detection> Sean Park , Iqbal Gondal
HDBSCAN: 带有应用程序噪音的基于层次密度的空间聚类
3.< A hybrid deep learning image-based analysis for effective malware detection>-Sitalakshmal Venkatraman, Mamoun Alazab ,R.Vinayakumar
CNN + bi-directional pipline deep learning,
SVM machine learning,
k-mean聚类
4.< Dynamic data fusion using multi-input models for malware classification>
LSTM+Dense 1,两特征各单独使用。2,双特征通过LSTM得到的结果,混合后通过softmax Dense层 3.得到最后两个结果,链接变为一个数组后后使用Softmax 层后的最后结果。
5.< An improved Method for Packed malware Detection using PE Header and Section Table information>
DT decision tree,寻找规则
6.< Improvement of malware detection and classification using API call sequence alignment and visualization >
1.聚类:为了生成恶意软件家族(不使用聚类,会在MSA进一步小型分类时,会产生噪音)
三步的聚类机制:1.按决策树划分(weka C4.5)
2.MSA(multiple squence alignment) :使用工具 clustalx ,jalview
用于细分,将聚类的分组细分,组合小组,形成模型
3.分类 similarity-SW ; similarity-LCS
结果 94%, 同时使用可视化的
7.< A mobile malware detection method using beharior features in network traffic >
利用信息增益比 C4.5 97.89%