读书笔记:Beyond Short Snippets: Deep Networks for Video Classification

这篇读书笔记探讨了视频全局表达的获取方法,尤其是如何处理长时间序列信息,同时减少计算冗余。论文提出了两种策略:特征池化架构和LSTM架构。特征池化通过深度卷积和不同池化层结合,而LSTM则用于捕捉视频序列的全局信息。实验表明,时间序列的max pooling保留了空间信息,光流对LSTM的性能提升微弱。
摘要由CSDN通过智能技术生成

主要关注两个点:如何获取视频全局上的表达(考虑更长的时序上的信息),在获取全局表达时如何避免冗余的计算量(相比3D卷积核直接应用在所有frame stacks)。

主要工作

这里写图片描述
论文中讨论了两种方法,一种是提取每一帧的深度卷积特征,再使用不同的pooling层结构进行特征融合,得到最终输出。一种是使用lstm提取视频序列上的全局信息,再加softmax层得到最终分类。

Feature Pooling Architectures

这里写图片描述

Conv Pooling的效果最好,因为它在时间序列上的max pooling层,保留了空间信息。Late Pooling效果差也是因为高维的全连接层破坏了空间结构。Time-Domain Conv相当于用小的时序窗口捕获局部结构,最后实验效果最差,说明更长的时间序列效果更好。

LSTM Architecture

这里写图片描述</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值