题目:
Given an unsorted array of integers, find the length of longest increasing subsequence.
例子
Given
[10, 9, 2, 5, 3, 7, 101, 18]
The longest increasing subsequence is:
[2, 3, 7, 101], therefore the length is 4.
Note that there may be more than one LIS combination, it is only necessary for you to return the length.
问题解析:
求数组的最长递增子序列的长度。
链接:
思路标签:
算法:动态规划、二分查找
解答:
1. 求最长递增子数组的长度,时间复杂度:O(nlogn)
- 使用一个二分查找的方式,找到递增子数组中大于等于当前值的第一个数的位置;
- 如果找到,则利用当前值替换;否则将当前值加入到递增子数组中,表明该值比子数组的值都大,可能输入子数组。
- 例子:nums = [5,6,7,1,2,8,3,4,0,5,9]:
- 遍历到 7: res = [5,6,7];
- 遍历到 2: res = [1,2,7];
- 遍历到 8: res = [1,2,7,8];
- 遍历到 3: res = [1,2,3,8];
- 遍历到 4: res = [1,2,3,4];
- 剩下三个元素 : res = [0,2,3,4,5,9];
- 最后我们就可以得到最长递增子序列的长度,但是这里要注意得到的子序列不是真正的子序列,然而其长度是正确的。
- 该算法无法得到最长递增子序列,仅计算长度。
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if(nums.size() <= 0) return 0;
vector<int> res;
for(int i=0; i<nums.size(); ++i){
auto it = lower_bound(res.begin(), res.end(), nums[i]);
if(it == res.end())
res.push_back(nums[i]);
else
*it = nums[i];
}
return res.size();
}
};
2. 可以得到最长递增子序列的方法,时间复杂度:O(n^2)
- 需要一个保存到当前元素最长的子序列的长度的数组,以及一个保存当前元素的前驱数组;
- 对于每个元素需要与其前面的所有元素进行比较,以不断更新最长子序列的长度和前驱;
- LIS返回最长子序列的长度,然后通过前驱数组,找到第一个最长子序列。
#include <iostream>
#include <vector>
using namespace std;
/*
arr: int数组
pre: array同等长度的int数组 记录第i个结点的前驱
nIndex: 最大长度所在的下标
*/
int LIS(const vector<int> &arr, vector<int> &pre, int &nIndex) {
int length = arr.size();
if (length <= 1)
return arr.size();
//初始化当前最长递增子序列的最大长度数组 & 前驱数组
vector<int> longest(length, 1);
for (int i = 0; i < length; i++) {
pre.push_back(-1);
}
//记录最长的长度 初始化为1
int nLis = 1;
for (int i = 1; i < length; i++) {
for (int j = 0; j < i; j++) {
if (arr[j] <= arr[i]) {
//如果递增 并且通过第j个结点可以达到更长则更新并记录前驱
if (longest[i] < longest[j] + 1) {
longest[i] = longest[j] + 1;
pre[i] = j;
}
}
}
//统计最大的值及位置
if (nLis < longest[i]) {
nLis = longest[i];
nIndex = i;
}
}
return nLis;
}
//获取最大长度的序列 主要通过前驱查找
void GetLis(const vector<int> &arr, const vector<int> &pre, vector<int> &lis, int nIndex) {
while (nIndex >= 0)
{
lis.push_back(arr[nIndex]);
nIndex = pre[nIndex];
}
//数组翻转
reverse(lis.begin(), lis.end());
}
//输出序列
void Print(const vector<int> &arr) {
for (int i = 0; i < arr.size(); i++)
cout << arr[i] << " ";
cout << endl;
}
int main()
{
vector<int> arr = { 23,56,43,12,78,4,9,10,68,42 };
vector<int> pre;
int nIndex;
int max = LIS(arr, pre, nIndex);
vector<int> lis;
GetLis(arr, pre, lis, nIndex);
Print(arr);
cout << "最大长度: " << max << endl;
Print(lis);
return 0;
}