准确率、精确率、召回率、F1值

1.TP、TN、FP、FN

  • 先粘一个官方形式的。
    混淆矩阵相关(Relevant),正类	无关(NonRelevant),负类被检索到(Retrieved)	True Positives(TP,正类判定为正类。即女生是女生)	False Positives(FP,负类判定为正类,即“存伪”。男生判定为女生)未被检索到(Not Retrieved)	False Negatives(FN,正类判定为负类,即“去真”。女生判定为男生)	True Negatives(TN,负类判定为负类。即男生判定为男生)

用新冠来举例理解。下方正方形为样本,其中

  1. 圆的部分认定为检测后是阳性的,其余部分为检测为阴性的(但是现在的情况是检测并不完全准确,有可能检测时阴性,但实际上已经有新冠,只是无症状)
  2. 现在只看园内,园的左半绿色部分意思是:实际上这个人是新冠患者;右办粉色部分则为实际并不是新冠患者;那么圆内绿色部分则为 ‘真阳’对应‘正类检索为正类’TP,粉色部分为‘假阳’对应‘正类检索为负类’FN。
  3. 这样我们就确定了圆内两个部分的实际情况,以已确定的情况为标准看圆外,正方形左半部分检测为阴,但实际是阳性,那么他就为‘假阴’对应‘负类检索为正类’FP;正方形右边正好与左边部分相反,检测为阴,实际也是阴性,那么就为‘真阴’对应‘负类检索为负类’TN。

在这里插入图片描述

准确率、精准率、召回率、F1值

  • 准确率(Accuracy)。就是所有的预测正确(正类负类)的占总的比重。解释为:(预测为正,实际也为正的数量)与(预测为负,实际也为负)的和除以全部四种情况(TP+TN+FP+FN)的比率

在这里插入图片描述

  • 精准率(Precision)。识别的正例占素有实际正例的比例。通俗来讲就是针对我们预测结果而言的,真实为正的样本占预测为正样本的占比。预测为正有两种可能了,一种就是把正类预测为正类(TP),另一种就是把负类预测为正类(FP)
    在这里插入图片描述

  • 召回率(Recall)。识别的正例占素有实际正例的比例。解释为样本中的正例有多少被预测正确了。有两种可能,一种是把原来的正类预测成正类(TP),另一种就是把原来的正类预测为负类(FN)

在这里插入图片描述

  • F1值(H-mean值)。用一个F1值来综合评估精确率和召回率,它是精确率和召回率的调和均值,当精确率和召回率都高时,F1值也会高。

在这里插入图片描述
Python代码

from sklearn.linear_model import LogisticRegression  #逻辑回归模型
from sklearn.metrics import accuracy_score  #准确率(Accuracy)
from sklearn.metrics import precision_score  #精准率(Precision)
from sklearn.metrics import recall_score  #召回率(Recall)
from sklearn.metrics import classification_report #分类报告(包含准确,精准,召回的结果)
from sklearn.metrics import roc_auc_score  #计算AUC,评估模型好坏
lr = LogisticRegression(solver=?) #solver 选择算法
lr.fit(x_train,y_train)  #训练模型
lr.predict(x_test)  #预测
lr.predict_proba(x_test)  #模型预测正例的概率
roc_auc_score(y_test,lr.predict_proba(x_test)[:,1])  #放入真实的结果和模型预测出的概率
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Weidong He.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值