机器学习——损失函数(个人笔记)

本文是关于机器学习中损失函数的个人笔记,详细介绍了损失函数的作用,它用于衡量模型预测值与真实值的不一致程度。内容包括回归和分类两种类型的损失函数,如均方误差(MSE)、平均绝对误差(MAE)、Huber Loss,以及分类问题中的0-1损失、交叉熵损失、合页损失和指数损失等。通过对比各种损失函数的特点,帮助读者更好地理解和选择适用的损失函数。
摘要由CSDN通过智能技术生成

机器学习——损失函数

前言:

在开始学习损失函数的时候,可能大家都会觉得是关于数学的会非常晦涩难懂,但是你们要从根源去学习这个概念,**“损失”**函数,以及这个函数和概率之间的关系。

概念:

损失函数是用来估量模型的预测值F(X)与真实值Y的不一致程度

损失函数大致分为两类:

  • 分类
  • 回归

回归——损失函数

  • 均方误差(Mean Square Error,MSE)
    在这里插入图片描述
    特点:

    会扩大大于一的误差的权重,缩小小于一的误差的权重,造成离群点对预测干扰较大,但是不容易产生震荡

  • 平均绝对误差(Mean Absolute Error,MAE)
    在这里插入图片描述

    特点:离群点对预测造成的干扰比均方误差小,但是容易发生震荡,不利于函数的收敛和模型的学习

  • Huber Loss(上面两种的综合)
    在这里插入图片描述

分类——损失函数

  • 0-1损失

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值