1092: To the Max 最大子矩阵

本文介绍了一个寻找二维数组中最大子矩阵和的算法问题,包括输入输出格式、样例及核心算法实现。通过扫描行累加值并动态规划求解最大连续子序列和,最终找到具有最大和的子矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1092: To the Max


ResultTIME LimitMEMORY LimitRun TimesAC TimesJUDGE
3s8192K1256268Standard
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.

The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

 

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2

Sample Output

15

 


This problem is used for contest: 35 

 

#include<stdio.h>
int main()
{
    int n,i,j,k;
    int a[505][505];
    while(scanf("%d",&n)==1)
    {
        for(i=0;i<n;i++) for(j=0;j<n;j++) scanf("%d",&a[i][j]);
        int max=(1<<31);
        for(i=0;i<n;i++)
        {
            int f[500]={0};
            for(j=i;j<n;j++)
            {
                int b=0;
                for(k=0;k<n;k++) f[k]+=a[k][j];
                for(k=0;k<n;k++)
                {
                    if(b>0) b+=f[k];
                    else b=f[k];
                    if(b>max) max=b;
                }
            }
        }
        printf("%d/n",max);
    }
    return 0;
}

 


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值