Deep Learning based End-to-End Wireless Communication Systems without Pilots

本文提出了一种基于深度学习的无导频端到端无线通信系统,适用于频率选择信道和MIMO信道。系统通过训练自动编码器网络,其中无线信道建模为不可训练的随机卷积层,发射机学习鲁棒编码,接收机通过双线性操作提取信道信息和数据恢复。实验表明,该系统在多种无线场景下性能优越,能有效利用信道和数据的相关性,无需传统导频即可实现高效通信。
摘要由CSDN通过智能技术生成

ABSTRACT

——机器学习的最新发展,尤其是深度神经网络 (DNN),使基于学习的端到端通信系统成为可能,其中 DNN 用于替代发送器和接收器的所有模块。在本文中,开发了两个用于频率选择信道和多输入多输出 (MIMO) 信道的端到端框架,其中无线信道效应使用不可训练的随机卷积层建模。端到端框架使用小批量输入数据和通道样本进行训练。与在当前通信系统中使用导频信息隐式或显式估计未知信道参数不同,发射机 DNN 学习以对各种信道条件具有鲁棒性的方式转换输入数据。接收器由两个 DNN 模块组成,分别用于通道信息提取和数据恢复。采用双线性产生操作来组合从信道信息提取模块提取的特征和接收信号。在数据恢复模块中进一步利用组合特征来恢复传输的数据。与传统通信系统相比,频率选择信道和 MIMO 信道的性能有所提高。此外,端到端系统可以自动利用通道和源数据中的相关性来提高整体性能。

introduction

现代无线通信的发展极大地改善了我们的日常生活。一个成熟的成功通信系统利用各种技术进步并在各自的模块中实现它们。如图 1(a) 所示,在发射机和接收机中设计了一系列信号处理模块,以补偿信道效应并减轻干扰,从而使数据能够可靠地从发射机传输到接收机。然而,这些模块通常是单独开发和优化的,可能无法及时实现整体性能优化。此外,信道特性会随着各种因素而变化,例如工作频率和传播环境。因此,其中一些模块应设计为适应变化的环境以获得最佳性能,这通常是一项艰巨的任务。

最近,
深度学习正在重塑无线通信系统设计,其中数据驱动的方法可以改进和补充传统的基于模型的方法 [1, 2, 3, 4, 5, 6]。已经设计了基于深度学习的端到端通信范式 [2, 4, 7, 5] 并引起了越来越多的关注。对于端到端通信,发送器和接收器都由深度神经网络 (DNN) 表示,如图 1(b) 所示。发送器 DNN 学习将传输的数据转换为嵌入向量并通过无线信道发送,而接收器 DNN 学习从接收到的信号中恢复传输的数据。端到端管道中的 DNN 以受监督的方式进行训练,以最大限度地减少端到端损失,该损失衡量恢复的数据和传输的数据之间的不一致。由于它是一种纯数据驱动的方法,没有预先假设的信道模型作为先决条件,因此它可能为各种通信场景提供通用的解决方案。尽管端到端范式在加性高斯白噪声 (AWGN) 信道下显示出良好的性能 [2],但如何将此框架扩展到通用无线信道,例如频率选择信道和多输入多输出 (MIMO)渠道,还是很有挑战的。

传统上,处理衰落信道的常见做法是在数据块中插入导频,这些导频是接收机预先知道的。接收机首先在导频的帮助下估计当前信道参数,并通过用估计的信道参数求解逆问题来恢复传输的数据。然而,这种范式与端到端通信系统不兼容。导频的使用在很大程度上使设计复杂化,因为接收器必须采用两个异构源,即接收数据和估计的信道参数,作为输入并在没有任何先验知识的情况下解决逆问题。在现有文献中,端到端学习系统是在常规通信框架下设计的,例如正交频分复用(OFDM)和基于奇异值分解(SVD)的MIMO,将信道分解为独立的子信道。

在本文中,我们提出了一种基于深度学习的通用无线信道端到端通信系统,其中传统的模块,包括源编码、信道编码、调制等,已经被发射端的 DNN 取代,一个在接收器处。这个问题被表述为训练一个深度自动编码器网络,该网络具有不可训练的随机卷积层,代表无线信道。在发射器和接收器中都使用了卷积神经网络 (CNN),并提出了一种具有小批量输入样本和通道的训练算法。与使用导频隐式或显式估计未知信道参数不同,发射机学习以对各种信道条件鲁棒的方式对输入数据进行编码。接收器由两个 DNN 模块组成,分别用于通道信息提取和数据恢复。采用双线性产生操作来组合从信道信息提取模块提取的特征和接收信号。组合特征进一步用于数据恢复模块以恢复传输的数据。所提出的无导频端到端系统在两种常用的无线场景下进行了测试,即频率选择信道和平坦衰落 MIMO 信道。从实验来看,端到端系统可以以数据驱动的方式成功地利用各种相关性并获得卓越的结果。
论文的主要贡献如下,

  1. 我们为通用无线信道开发了一种无导频端到端范式,包括频率选择性信道和平坦衰落 MIMO 信道,其中无线信道被建模为随机卷积层。
  2. 我们设计了一个通道特征提取模块,其输出被合并用于通过双线性产生进行数据恢复。这样,可以在每个位置有效地利用信道信息进行数据重构。
  3. 我们展示了无导频端到端通信系统在频率选择信道和平坦衰落 MIMO 信道下的有效性,特别是展示了它节省导频资源和利用无线信道和源数据中的相关性的能力。

II. RELATED WORKS

在本节中,我们简要回顾了物理层通信深度学习、逆问题深度学习和深度学习中的对抗层的最新进展。

A. 物理层通信系统中的深度学习
深度学习已被用于增强传统的通信模块。基于深度学习的方法可以提高信道解码性能 [9, 10, 11, 12, 13]。深度学习也可用于信道估计 [14, 15] 和信号检测 [16, 17, 18]。关于这个主题的更多信息可以在 [19, 20] 和其中的参考资料中找到。
除了改进传统的通信模块外,最近还开发了基于深度学习的端到端通信系统,其中发送器和接收器都由 DNN 表示。在 [2] 中首次提出,该框架具有与 AWGN 信道下具有块结构的传统方法相似的性能。 OFDM 系统 [21] 和基于 SVD 预编码的 MIMO 系统 [22] 也采用了端到端框架,其中将信道视为一组独立的子信道。
最近,人们研究了如何在没有信道模型先验知识的情况下学习端到端通信系统。在[23]中,开发了一种基于强化学习的方法,用于在不知道信道传递函数或信道状态信息(CSI)的情况下优化发射机DNN。在[24]中,采用随机扰动方法设计了一个无模型端到端通信框架。最近,我们在[5]中开发了一种基于条件生成对抗网(GAN)的构建端到端通信的方法,其中信道效应由条件GAN建模。端到端系统可以使用条件GAN作为代理信道进行训练,以允许梯度从接收机DNN反向传播到发射机DNN。

B. 逆问题的深度学习
我们在本文中提出的方法也与解决逆问题和使用学习方法恢复原始数据有关。事实上,深度学习已经显示出其解决逆问题的能力,特别是在图像处理领域,例如去噪和去模糊 [25, 26],其中退化可以表示为原始图像与核卷积。流行的方法包括使用 CNN 学习端到端映射 [27, 28, 29] 和使用 GAN [30, 31, 32, 33] 学习后验。

对于图像处理领域遇到的大多数逆问题,可以通过学习原始图像中的“先验知识”,例如形状和纹理[34]来恢复噪声和失真图像。相比之下,端到端框架中的输入数据可以是独立的比特流,没有任何有用的先验知识,发射器 DNN 应该学习形成具有冗余的发射信号的星座,以便接收器可以隐式推断信道信息,然后利用它来恢复传输的数据。

C. 联合源和信道编码
最近,基于自动编码器的系统已应用于数据压缩,并显示出优于传统方法的效果。因此,可以训练端到端通信系统以传输结构化数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值