sklearn之特征工程

转博客:http://www.cnblogs.com/jasonfreak/p/5448385.html

什么是特征工程

** 最大限度从原始数据中提取特征义工算法和模型使用**

数据预处理

# 导入数据
from sklearn.datasets import load_iris
iris = load_iris()
iris.data
  iris.target

特征问题

  1. 不属于同一量纲
  2. 消息冗余
  3. 定性特征不能直接使用
  4. 存在缺失值
  5. 消息利用率低

无量纲化(将不同规格转换同一规格)

标准化

x ′ = x − X ‾ S x ^ { \prime } = \frac { x - \overline { X } } { S } x=SxX

from sklearn.preprocessing import StandardScaler
StandardScaler().fit_transform(iris.data)

区间缩放法

x ′ = x − M i n Max ⁡ − Min ⁡ x ^ { \prime } = \frac { x - M i n } { \operatorname { Max } - \operatorname { Min } } x=MaxMinxMin

from sklearn.preprocessing import MinMaxScaler
MinMaxScaler().fit_transform(iris.data)

单位向量(归一化)

x ′ = x ∑ j m x [ j ] 2 x ^ { \prime } = \frac { x } { \sqrt { \sum _ { j } ^ { m } x [ j ] ^ { 2 } } } x=jmx[j]2 x

from sklearn.preprocessing import Normalizer
Normalizer().fit_transform(iris.data)

对定量特征二值化

设定一个阈值,大于阈值赋值为1,小于为0
x ′ = { 1 , x >  threshold  0 , x ≤  threshold  x ^ { \prime } = \left\{ \begin{array} { l } { 1 , x > \text { threshold } } \\ { 0 , x \leq \text { threshold } } \end{array} \right. x={1,x> threshold 0,x threshold 

from sklearn.preprocessing import Binarizer 
Binarizer(threshold = 3).fit_transform(iris.data)

对定性特征哑编码

在机器学习中,特征经常不是数值型的而是分类型的。举个例子,一个人可能有 [“male”, “female”] , [“from Europe”, “from US”, “from Asia”] , [“uses Firefox”, “uses Chrome”, “uses Safari”, “uses Internet Explorer”] 等分类的特征。这些特征能够被有效地编码成整数,比如 [“male”, “from US”, “uses Internet Explorer”] 可以被表示为 [0, 1, 3] , [“female”, “from Asia”, “uses Chrome”] 表示为 [1, 2, 1] 。

from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder()
enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])  
enc.transform([[1, 2, 1]]).toarray()
array([[ 0.,  1.,  0.,  0.,  1.,  0.,  1.,  0.,  0.]])

缺失值计算

import numpy as np
from sklearn.preprocessing import Imputer
imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
imp.fit([[1, 2], [np.nan, 3], [7, 6]])
X = [[np.nan, 2], [6, np.nan], [7, 6]]
print(imp.transform(X))                           
[[ 4.          2.        ]
 [ 6.          3.66666667]
 [ 7.          6.        ]]

数据变换

X X X ( X 1 , X 2 ) \left( X _ { 1 } , X _ { 2 } \right) (X1,X2) 转换成 ( 1 , X 1 , X 2 , X 1 2 , X 1 X 2 , X 2 2 ) \left( 1 , X _ { 1 } , X _ { 2 } , X _ { 1 } ^ { 2 } , X _ { 1 } X _ { 2 } , X _ { 2 } ^ { 2 } \right) (1,X1,X2,X12,X1X2,X22)

import numpy as np
from sklearn.preprocessing import PolynomialFeatures
X = np.arange(6).reshape(3, 2)
X  
array([[0, 1],
       [2, 3],
       [4, 5]])
poly = PolynomialFeatures(degree=3, interaction_only=True)
poly.fit_transform(X) 
array([[  1.,   0.,   1.,   0.],
       [  1.,   2.,   3.,   6.],
       [  1.,   4.,   5.,  20.]])

特征选择

两方面考虑特征

  1. 特征是否发散
  2. 特征与目标的相关性

Filter

  1. 方差选择法
  2. 相关系数法
  3. 卡方检验
  4. 互信息法
from sklearn.feature_selection import VarianceThreshold
VarianceThreshold(threshold=3).fit_transform(iris.data)

Wrapper

  1. 递归特征消除法
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

#递归特征消除法,返回特征选择后的数据
#参数estimator为基模型
#参数n_features_to_select为选择的特征个数
RFE(estimator=LogisticRegression(), n_features_to_select=2).fit_transform(iris.data, iris.target)

Embedded

降维

主成分分析法(PCA)

from sklearn.decomposition import PCA
PCA(n_components=2).fit_transform(iris.data)

线性判别分析法(LDA)

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
LinearDiscriminantAnalysis(n_components=2).fit_transform(iris.data, iris.target)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值