机器学习sklearn-特征工程

本文介绍了数据挖掘的5大流程,重点讲解了特征工程,包括sklearn的预处理模块如数据无量纲化、缺失值处理、特征编码等。通过MinMaxScaler、StandardScaler进行数据归一化和标准化,使用SimpleImputer处理缺失值,LabelEncoder和OneHotEncoder进行分类特征编码,Binarizer和KBinsDiscretizer处理连续性特征。此外,还讨论了特征选择的过滤法、嵌入法和包装法。
摘要由CSDN通过智能技术生成

数据挖掘的5大流程:

1、获取数据

2、数据预处理

3、特征工程

将原始数据转换为更能代表预测模型的潜在问题的特征的过程,可以通过挑选最相关的特征,提取特征以及创建特征来是想

4建模、测试模型并预测结果

5、上线模型

特征工程

sklearn的预处理模块Preprocessing、 Dimensionality reduction

Preprocessing 基本包含数据预处理所有内容

Impute 填补缺失值

feature_selection 包含特征选择的各种方法的实践

fit_transform()  fit 接口中只允许导入至少二维数组,一维会报错,输入的是特征矩阵,现实案例中不会是一维

inverse_transform()

Preprocessing 

数据无量纲化

线性无量纲化包括去中心化处理和缩放处理

preprocessing.MinMaxScaler  数据归一化 Normalization 归一化之后的数据服从正态分布

        feature_range 控制我们希望把数据压缩到的范围 默认[0,1]

preprocessing.StandardScaler 转换为标准正太分布

建议先使用StandardScaler 效果不好换MinMaxScaler

Impute.SimpleImputer  填补缺失值  实例化、fit_transform()

missing_values  数据缺失值长什么样,默认空值np.nan

strayegy 填充策略 均值 终止 众数 constant 

data.loc[].values.reshape

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值