信息与通信的数学基础——第八章 积分变换

1. 周期函数的Fourier级数

1. 简谐波
x ( t ) = A c o s ( w 0 t + θ ) = a c o s w 0 t + b s i n w 0 t x(t) = Acos(w_0t + \theta) \\ =acosw_0t + bsinw_0t x(t)=Acos(w0t+θ)=acosw0t+bsinw0t

2. Fourier级数的三角形式
对于任何一个周期为T的复杂函数 f T ( t ) f_T(t) fT(t),有:
f T ( t ) = a 0 2 + ∑ n = 1 + ∞ a n cos ⁡ n w 0 t + b n sin ⁡ n w o t f_T(t) = \frac{a_0}{2}+\sum_{n=1}^{+\infty} a_n \cos nw_0t + b_n\sin nw_ot fT(t)=2a0+n=1+ancosnw0t+bnsinnwot
意义
周期信号可以分解为一系列固定频率的简谐波之和,这些简谐波的频率分别为一个基频 w 0 w_0 w0的倍数 (周期信号并不包含所有的频率成分)

3. Fourier级数的指数形式
f T ( t ) = ∑ n = 1 + ∞ c n e − j n w 0 t f_T(t) = \sum_{n=1}^{+\infty}c_ne^{-jnw_0t} fT(t)=n=1+cnejnw0t

2. 非周期函数的傅里叶变换

Fourier级数要求展开的函数必须是周期函数,现在需要对非周期函数也进行频谱分析

2.1 Fourier积分公式[13]

定义
设函数f(t)绝对可积,即 ∫ − ∞ + ∞ f ( t ) d t < + ∞ \int_{-\infty}^{+\infty}f(t)dt<+\infty +f(t)dt<+,有:
f ( t ) = 1 2 π ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( t ) e − j w t d t ] e j w t d w f(t) = \frac{1}{2 \pi}\int_{-\infty}^{+\infty}[\int_{-\infty}^{+\infty}f(t)e^{-jwt}dt]e^{jwt}dw f(t)=2π1+[+f(t)ejwtdt]ejwtdw
(1)Fourier正变换
F ( w ) = ∫ − ∞ + ∞ f ( t ) e − j w t d t = F [ f ( t ) ] F(w) = \int_{-\infty}^{+\infty}f(t)e^{-jwt}dt = \mathscr{F}[f(t)] F(w)=+f(t)ejwtdt=F[f(t)]
(2)Fourier逆变换
f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( w ) e j w t d w = F − 1 [ F ( w ) ] f(t) = \frac{1}{2 \pi} \int_{-\infty}^{+\infty}F(w)e^{jwt}dw = \mathscr{F}^{-1}[F(w)] f(t)=2π1+F(w)ejwtdw=F1[F(w)]

物理意义
Fourier变换刻画了一个非周期函数的频谱特性,其频谱是连续取值的

限制
Fourier变化成立要求f(t)需要绝对可积

3. 单位冲激函数

3.1 单位冲激函数的概念及性质

定义
单位冲激函数 δ ( t ) \delta(t) δ(t)满足:
(1)当 t ≠ 0 t \neq 0 t=0时, δ ( t ) = 0 \delta(t) = 0 δ(t)=0
(2) ∫ − ∞ + ∞ δ ( t ) d t = 1 \int_{-\infty}^{+\infty} \delta(t)dt = 1 +δ(t)dt=1
在这里插入图片描述
单位冲激函数不能用“值得对应关系来使用”,而是通过它的性质使用它

性质
(1)筛选性质
∫ − ∞ + ∞ δ ( t − t 0 ) f ( t ) d t = f ( t 0 ) \int_{-\infty}^{+\infty} \delta(t-t_0)f(t)dt = f(t_0) +δ(tt0)f(t)dt=f(t0)

(2)对称性质
δ ( t ) = δ ( − t ) \delta(t) = \delta(-t) δ(t)=δ(t)

3.2 单位冲激函数得Fourier变换

单位冲激函数包含所有频率成分且有相等的幅度,称此为均匀频谱
F [ δ ( t ) ] = 1 ∫ − ∞ + ∞ e j w t d w = 2 π δ \mathscr{F}[\delta(t)] = 1\\ \int_{-\infty}^{+\infty} e^{jwt}dw = 2 \pi \delta F[δ(t)]=1+ejwtdw=2πδ

3.2.1 非绝对可积的非周期函数的Fourier变化[14]

步骤
通过代换、求导、积分得到与常见函数的关系,通过常见函数的Fourier变换求解

常用变换
∫ − ∞ + ∞ e j w t d w = 2 π δ ( t ) ∫ − ∞ + ∞ e j w t d t = 2 π δ ( w ) \int_{-\infty}^{+\infty} e^{jwt}dw = 2 \pi \delta(t) \int_{-\infty}^{+\infty} e^{jwt}dt = 2 \pi \delta(w) +ejwtdw=2πδ(t)+ejwtdt=2πδ(w)

在这里插入图片描述
在这里插入图片描述

4. 周期函数的Fourier变换

F ( w ) = 2 π ∑ − ∞ + ∞ F ( n w 0 ) δ ( w − n w 0 ) F(w) = 2 \pi \sum_{-\infty}^{+\infty}F(nw_0)\delta(w-nw_0) F(w)=2π+F(nw0)δ(wnw0)
在这里插入图片描述

5. Fourier变换的性质

(1)线性性质
F [ a f ( t ) + b g ( t ) ] = a F ( w ) + b G ( w ) \mathscr{F}[af(t)+bg(t)] = aF(w)+bG(w) F[af(t)+bg(t)]=aF(w)+bG(w)
在这里插入图片描述
(2)位移性质
时移性质:当一个信号沿时间轴移动后,各频率大小不发生改变,相位发生变化
F [ f ( t − t 0 ) ] = e − j w t 0 F ( w ) \mathscr{F}[f(t-t_0)]=e^{-jwt_0}F(w) F[f(tt0)]=ejwt0F(w)
频移性质:常用来进行频谱搬移
F − 1 [ F ( w − w 0 ) ] = e j w t 0 f ( t ) \mathscr{F}^{-1}[F(w-w_0)] = e^{jwt_0}f(t) F1[F(ww0)]=ejwt0f(t)

5.1 根据线性性质与频移性质求Fourier变换

在这里插入图片描述

(3)相似性质
设a为非零常数,则:
F [ f ( a t ) ] = 1 ∣ a ∣ F ( w a ) \mathscr{F}[f(at)] = \frac{1}{|a|}F(\frac{w}{a}) F[f(at)]=a1F(aw)
在这里插入图片描述
说明:信号被压缩频谱被扩展,信号被扩展,频谱被压缩
脉冲宽度与频带宽度之间呈反比关系

(4)微分性质
F [ f ( n ) ( t ) ] = ( j w ) n F ( w ) F − 1 [ F ( n ) ( w ) ] = ( − j t ) n f ( t ) \mathscr{F}[f^{(n)}(t)] = (jw)^nF(w) \\ \mathscr{F}^{-1} [F^{(n)}(w)] = (-jt)^n f(t) F[f(n)(t)]=(jw)nF(w)F1[F(n)(w)]=(jt)nf(t)

在这里插入图片描述
在这里插入图片描述

5.1 求解 t n f ( t ) t^nf(t) tnf(t)类型的Fourier变换[15]

根据微分性质可得:
F [ t n f ( t ) ] = j n F ( n ) ( w ) F − 1 [ w n F ( w ) ] = ( − j ) n f ( n ) ( t ) \mathscr{F}[t^nf(t)] = j^nF^{(n)}(w)\\ \mathscr{F}^{-1}[w^nF(w)] = (-j)^nf^{(n)}(t) F[tnf(t)]=jnF(n)(w)F1[wnF(w)]=(j)nf(n)(t)
在这里插入图片描述
(5)积分性质
在这里插入图片描述

常见的 Fourier转化

(1) f ( t ) = e − α t ( t ≥ 0 ) f(t) = e^{-\alpha t}(t \geq0) f(t)=eαt(t0)
f ( t ) = e − α t → F ( w ) = 1 α + j w f(t) = e^{-\alpha t} \rightarrow F(w) = \frac{1}{\alpha+jw} f(t)=eαtF(w)=α+jw1

在这里插入图片描述
(2) f ( t ) = s g n t f(t) = sgnt f(t)=sgnt
s g n t = { 1 ,   t > 0 0 ,   t = 0 − 1 ,   t < 0 s g n t ⟷ 2 j w sgnt = \begin{cases} 1 , \ t>0\\ 0 , \ t=0\\ -1 , \ t<0 \end{cases} \\ sgnt \longleftrightarrow \frac{2}{jw} sgnt=1, t>00, t=01, t<0sgntjw2

在这里插入图片描述
(3) f ( t ) = 1 f(t) = 1 f(t)=1
F [ 1 ] = 2 π δ ( w ) \mathscr{F}[1] = 2 \pi \delta(w) F[1]=2πδ(w)
在这里插入图片描述
(4)u(t) = sgn(t) + 1
F [ u ( t ) ] = 1 j w + π δ ( w ) \mathscr{F}[u(t)] = \frac{1}{jw}+\pi \delta(w) F[u(t)]=jw1+πδ(w)
在这里插入图片描述
(5) e j w t e^{jwt} ejwt
F [ e j w 0 t ] = 2 π δ ( w − w 0 ) \mathscr{F}[e^{jw_0t}] = 2 \pi \delta(w-w_0) F[ejw0t]=2πδ(ww0)
在这里插入图片描述

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
工程数学中的复变函数与积分变换是两个重要的概念。复变函数是指定义在复数域上的函数,具有实部和虚部两个部分,常用形式为f(z)=u(x,y)+iv(x,y),其中u(x,y)和v(x,y)是实函数,x和y是复数z=x+iy的实部和虚部。复变函数的研究在工程数学中具有广泛的应用,如在物理、电路分析、信号处理等领域中,复变函数经常用于描述问题的解析解。 积分变换是根据给定的函数f(t)定义一个新的函数F(s),称为积分变换。常见的积分变换有拉普拉斯变换和傅里叶变换。积分变换可以将一个在时域的函数转换为频域的函数,从而方便对信号的频率特性进行分析和处理。在工程数学中,积分变换被广泛应用于信号处理、系统控制、通信等领域,并且在实际工程问题的求解中往往能够得到简化的数学表达式。 PDF(Portable Document Format)是一种用于电子文档的文件格式。工程数学中的复变函数与积分变换可以通过编写、共享和传播PDF文档来进行学习和交流。许多教科书、学术论文和研究报告都以PDF格式发布,方便读者在线阅读、下载和打印。通过PDF文档,工程师和科学家可以了解复变函数与积分变换的理论知识和实际应用,以及相关的数学方法和技巧。同时,PDF文档还可以包含数学公式、图表、图像等多种多媒体元素,方便读者进行深入学习和理解。 综上所述,工程数学中的复变函数与积分变换是重要的概念,对于解决实际工程问题和进行数学分析具有重要意义。PDF文档提供了一种方便的方式来学习和交流这些概念,使得工程师和科学家能够更好地应用复变函数与积分变换

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冠long馨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值