机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

本文深入介绍了朴素贝叶斯算法,包括其理论基础、条件概率、全概率公式、贝叶斯推断和朴素贝叶斯推断。通过实例展示了如何使用Python实现一个简单的言论过滤器,用于分类文本数据。最后,通过代码演示了从数据预处理到模型训练和测试的全过程。
摘要由CSDN通过智能技术生成

 

 

一、前言

        朴素贝叶斯算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。该算法的优点在于简单易懂、学习效率高、在某些领域的分类问题中能够与决策树、神经网络相媲美。但由于该算法以自变量之间的独立(条件特征独立)性和连续变量的正态性假设为前提,就会导致算法精度在某种程度上受影响。

      本篇文章将从朴素贝叶斯推断原理开始讲起,通过实例进行辅助讲解。最后,使用Python3编程实现一个简单的言论过滤器。

 

二、朴素贝叶斯理论

朴素贝叶斯是贝叶斯决策理论的一部分,所以在讲述朴素贝叶斯之前有必要快速了解一下贝叶斯决策理论。

1、贝叶斯决策理论

假设现在我们有一个数据集,它由两类数据组成,数据分布如下图所示:

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

我们现在用p1(x,y)表示数据点(x,y)属于类别1(图中红色圆点表示的类别)的概率,用p2(x,y)表示数据点(x,y)属于类别2(图中蓝色三角形表示的类别)的概率,那么对于一个新数据点(x,y),可以用下面的规则来判断它的类别:

  • 如果p1(x,y)>p2(x,y),那么类别为1
  • 如果p1(x,y)<p2(x,y),那么类别为2

也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。已经了解了贝叶斯决策理论的核心思想,那么接下来,就是学习如何计算p1和p2概率。

2、条件概率

在学习计算p1 和p2概率之前,我们需要了解什么是条件概率(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。

                     机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

根据文氏图,可以很清楚地看到在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B)。

                                 机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

因此,

                             机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

同理可得

                        机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

所以,

                    机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

                机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

这就是条件概率的计算公式。

3、全概率公式

除了条件概率以外,在计算p1和p2的时候,还要用到全概率公式,因此,这里继续推导全概率公式。

假定样本空间S,是两个事件A与A'的和。

          机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

上图中,红色部分是事件A,绿色部分是事件A',它们共同构成了样本空间S。

在这种情况下,事件B可以划分成两个部分。

        机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

                     机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

在上一节的推导当中,我们已知

                  机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

所以

               机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

这就是全概率公式。它的含义是,如果A和A'构成样本空间的一个划分,那么事件B的概率,就等于A和A'的概率分别乘以B对这两个事件的条件概率之和。

将这个公式代入上一节的条件概率公式,就得到了条件概率的另一种写法:

            机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

4、贝叶斯推断

对条件概率公式进行变形,可以得到如下形式:

         机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

我们把P(A)称为"先验概率"(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。

P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。

P(B|A)/P(B)称为"可能性函数"(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。

所以,条件概率可以理解成下面的式子:

后验概率 = 先验概率 x 调整因子

这就是贝叶斯推断的含义。我们先预估一个"先验概率",然后加入实验结果,看这个实验到底是增强还是削弱了"先验概率",由此得到更接近事实的"后验概率"。

在这里,如果"可能性函数"P(B|A)/P(B)>1,意味着"先验概率"被增强,事件A的发生的可能性变大;如果"可能性函数"=1,意味着B事件无助于判断事件A的可能性;如果"可能性函数"<1,意味着"先验概率"被削弱,事件A的可能性变小。

为了加深对贝叶斯推断的理解,我们举一个例子。

       机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

两个一模一样的碗,一号碗有30颗水果糖和10颗巧克力糖,二号碗有水果糖和巧克力糖各20颗。现在随机选择一个碗,从中摸出一颗糖,发现是水果糖。请问这颗水果糖来自一号碗的概率有多大?

我们假定,H1表示一号碗,H2表示二号碗。由于这两个碗是一样的,所以P(H1)=P(H2),也就是说,在取出水果糖之前,这两个碗被选中的概率相同。因此,P(H1)=0.5,我们把这个概率就叫做"先验概率",即没有做实验之前,来自一号碗的概率是0.5。

再假定,E表示水果糖,所以问题就变成了在已知E的情况下,来自一号碗的概率有多大,即求P(H1|E)。我们把这个概率叫做"后验概率",即在E事件发生之后,对P(H1)的修正。

根据条件概率公式,得到

        机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

已知,P(H1)等于0.5,P(E|H1)为一号碗中取出水果糖的概率,等于30÷(30+10)=0.75,那么求出P(E)就可以得到答案。根据全概率公式,

       机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

所以,

     机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

将数字代入原方程,得到

      机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

这表明,来自一号碗的概率是0.6。也就是说,取出水果糖之后,H1事件的可能性得到了增强。

同时再思考一个问题,在使用该算法的时候,如果不需要知道具体的类别概率,即上面P(H1|E)=0.6,只需要知道所属类别,即来自一号碗,我们有必要计算P(E)这个全概率吗?要知道我们只需要比较 P(H1|E)和P(H2|E)的大小,找到那个最大的概率就可以。既然如此,两者的分母都是相同的,那我们只需要比较分子即可。即比较P(E|H1)P(H1)和P(E|H2)P(H2)的大小,所以为了减少计算量,全概率公式在实际编程中可以不使用。

5、朴素贝叶斯推断

理解了贝叶斯推断,那么让我们继续看看朴素贝叶斯。贝叶斯和朴素贝叶斯的概念是不同的,区别就在于“朴素”二字,朴素贝叶斯对条件个概率分布做了条件独立性的假设。 比如下面的公式,假设有n个特征:

      机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

由于每个特征都是独立的,我们可以进一步拆分公式 :

      机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

这样我们就可以进行计算了。如果有些迷糊,让我们从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。

某个医院早上来了六个门诊的病人,他们的情况如下表所示:

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?

根据贝叶斯定理:

        机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

可得:

       机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

根据朴素贝叶斯条件独立性的假设可知,"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

这里可以计算:

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。

这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。

同样,在编程的时候,如果不需要求出所属类别的具体概率,P(打喷嚏) = 0.5和P(建筑工人) = 0.33的概率是可以不用求的。

 

三、动手实战

说了这么多,没点实践编程怎么行?

以在线社区留言为例。为了不影响社区的发展,我们要屏蔽侮辱性的言论,所以要构建一个快速过滤器,如果某条留言使用了负面或者侮辱性的语言,那么就将该留言标志为内容不当。过滤这类内容是一个很常见的需求。对此问题建立两个类型:侮辱类和非侮辱类,使用1和0分别表示。

我们把文本看成单词向量或者词条向量,也就是说将句子转换为向量。考虑出现所有文档中的单词,再决定将哪些单词纳入词汇表或者说所要的词汇集合,然后必须要将每一篇文档转换为词汇表上的向量。简单起见,我们先假设已经将本文切分完毕,存放到列表中,并对词汇向量进行分类标注。编写代码如下:

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],                #切分的词条
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]                                                                   #类别标签向量,1代表侮辱性词汇,0代表不是
    return postingList,classVec
 
if __name__ == '__main__':
    postingLIst, classVec = loadDataSet()
    for each in postingLIst:
        print(each)
    print(classVec)

从运行结果可以看出,我们已经将postingList是存放词条列表中,classVec是存放每个词条的所属类别,1代表侮辱类 ,0代表非侮辱类。

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

继续编写代码,前面我们已经说过我们要先创建一个词汇表,并将切分好的词条转换为词条向量。

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],                #切分的词条
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]                                                                   #类别标签向量,1代表侮辱性词汇,0代表不是
    return postingList,classVec
def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0] * len(vocabList)                                    #创建一个其中所含元素都为0的向量
    for word in inputSet:                                                #遍历每个词条
        if word in vocabList:                                            #如果词条存在于词汇表中,则置1
            returnVec[vocabList.index(word)] = 1
        else: print("the word: %s is not in my Vocabulary!" % word)
    return returnVec   

def createVocabList(dataSet):
    vocabSet = set([])                      #创建一个空的不重复列表
    for document in dataSet:               
        vocabSet = vocabSet | set(document) #取并集
    return list(vocabSet)

if __name__ == '__main__':
    postingList, classVec = loadDataSet()
    print('postingList:\n',postingList)
    myVocabList = createVocabList(postingList)
    print('myVocabList:\n',myVocabList)
    trainMat = []
    for postinDoc in postingList:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    print('trainMat:\n', trainMat)

 从运行结果可以看出,postingList是原始的词条列表,myVocabList是词汇表。myVocabList是所有单词出现的集合,没有重复的元素。词汇表是用来干什么的?没错,它是用来将词条向量化的,一个单词在词汇表中出现过一次,那么就在相应位置记作1,如果没有出现就在相应位置记作0。trainMat是所有的词条向量组成的列表。它里面存放的是根据myVocabList向量化的词条向量

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

我们已经得到了词条向量。接下来,我们就可以通过词条向量训练朴素贝叶斯分类器。

我们已经得到了词条向量。接下来,我们就可以通过词条向量训练朴素贝叶斯分类器。

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],                #切分的词条
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]                                                                   #类别标签向量,1代表侮辱性词汇,0代表不是
    return postingList,classVec
def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0] * len(vocabList)                                    #创建一个其中所含元素都为0的向量
    for word in inputSet:                                                #遍历每个词条
        if word in vocabList:                                            #如果词条存在于词汇表中,则置1
            returnVec[vocabList.index(word)] = 1
        else: print("the word: %s is not in my Vocabulary!" % word)
    return returnVec   

def createVocabList(dataSet):
    vocabSet = set([])                      #创建一个空的不重复列表
    for document in dataSet:               
        vocabSet = vocabSet | set(document) #取并集
    return list(vocabSet)

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)                            #计算训练的文档数目
    numWords = len(trainMatrix[0])                            #计算每篇文档的词条数
    pAbusive = sum(trainCategory)/float(numTrainDocs)        #文档属于侮辱类的概率
    p0Num = np.zeros(numWords); p1Num = np.zeros(numWords)    #创建numpy.zeros数组,词条出现数初始化为0
    p0Denom = 0.0; p1Denom = 0.0                            #分母初始化为0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:                            #统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:                                                #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = p1Num/p1Denom                                      
    p0Vect = p0Num/p0Denom         
    return p0Vect,p1Vect,pAbusive                            #返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率
 
if __name__ == '__main__':
    postingList, classVec = loadDataSet()
    myVocabList = createVocabList(postingList)
    print('myVocabList:\n', myVocabList)
    trainMat = []
    for postinDoc in postingList:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V, p1V, pAb = trainNB0(trainMat, classVec)
    print('p0V:\n', p0V)
    print('p1V:\n', p1V)
    print('classVec:\n', classVec)
    print('pAb:\n', pAb)

 运行结果如下,p0V存放的是每个单词属于类别0,也就是非侮辱类词汇的概率。比如p0V的倒数第6个概率,就是stupid这个单词属于非侮辱类的概率为0。同理,p1V的倒数第6个概率,就是stupid这个单词属于侮辱类的概率为0.15789474,也就是约等于15.79%的概率。我们知道stupid的中文意思是蠢货,难听点的叫法就是傻逼。显而易见,这个单词属于侮辱类。pAb是所有侮辱类的样本占所有样本的概率,从classVec中可以看出,一用有3个侮辱类,3个非侮辱类。所以侮辱类的概率是0.5。因此p0V存放的就是P(him | 非侮辱类) = 0.0833,P(is | 非侮辱类) = 0.0417,一直到P(dog | 非侮辱类) = 0.0417,这些单词的条件概率。同理,p1V存放的就是各个单词属于侮辱类的条件概率。pAb就是先验概率

 机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

已经训练好分类器,接下来,使用分类器进行分类。

# -*- coding: UTF-8 -*-
import numpy as np
from functools import reduce


def loadDataSet():
	postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],				#切分的词条
				['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
				['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
				['stop', 'posting', 'stupid', 'worthless', 'garbage'],
				['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
				['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
	classVec = [0,1,0,1,0,1]   																#类别标签向量,1代表侮辱性词汇,0代表不是
	return postingList,classVec																#返回实验样本切分的词条和类别标签向量

def createVocabList(dataSet):
	vocabSet = set([])  					#创建一个空的不重复列表
	for document in dataSet:
		vocabSet = vocabSet | set(document) #取并集
	return list(vocabSet)

def setOfWords2Vec(vocabList, inputSet):
	returnVec = [0] * len(vocabList)									#创建一个其中所含元素都为0的向量
	for word in inputSet:												#遍历每个词条
		if word in vocabList:											#如果词条存在于词汇表中,则置1
			returnVec[vocabList.index(word)] = 1
		else:
			print("the word: %s is not in my Vocabulary!" % word)
	return returnVec													#返回文档向量

def trainNB0(trainMatrix,trainCategory):
	numTrainDocs = len(trainMatrix)	#计算训练的文档数目
	numWords = len(trainMatrix[0])#计算每篇文档的词条数
	pAbusive = sum(trainCategory)/float(numTrainDocs)		#文档属于侮辱类的概率
	p0Num = np.zeros(numWords); p1Num = np.zeros(numWords)	#创建numpy.zeros数组,
	p0Denom = 0.0; p1Denom = 0.0                        	#分母初始化为0.0
	for i in range(numTrainDocs):
		if trainCategory[i] == 1:							#统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
			p1Num += trainMatrix[i]
			p1Denom += sum(trainMatrix[i])                   ## 该词条的总的词数目   这压样求得每个词条出现的概率 P(w1),P(w2), P(w3)...
		else:												#统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
			p0Num += trainMatrix[i]
			p0Denom += sum(trainMatrix[i])
	p1Vect = p1Num/p1Denom									#相除        
	p0Vect = p0Num/p0Denom          
	return p0Vect,p1Vect,pAbusive							#返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率

def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
	p1 = reduce(lambda x,y:x*y, vec2Classify * p1Vec) * pClass1    			#对应元素相乘  这里需要好好理解一下 
	p0 = reduce(lambda x,y:x*y, vec2Classify * p0Vec) * (1.0 - pClass1)
	print('p0:',p0)
	print('p1:',p1)
	if p1 > p0:
		return 1
	else: 
		return 0

def testingNB():
	listOPosts,listClasses = loadDataSet()									#创建实验样本
	myVocabList = createVocabList(listOPosts)                               #创建词汇表
	trainMat=[]
	for postinDoc in listOPosts:
		trainMat.append(setOfWords2Vec(myVocabList, postinDoc))				#将实验样本向量化
	p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses))		#训练朴素贝叶斯分类器
	testEntry = ['love', 'my', 'dalmation']									#测试样本1
	thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))				#测试样本向量化
	if classifyNB(thisDoc,p0V,p1V,pAb):
		print(testEntry,'属于侮辱类')										#执行分类并打印分类结果
	else:
		print(testEntry,'属于非侮辱类')										#执行分类并打印分类结果
	testEntry = ['stupid', 'garbage']										#测试样本2

	thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))				#测试样本向量化
	if classifyNB(thisDoc,p0V,p1V,pAb):
		print(testEntry,'属于侮辱类')										#执行分类并打印分类结果
	else:
		print(testEntry,'属于非侮辱类')										#执行分类并打印分类结果

if __name__ == '__main__':
	testingNB()

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

我们测试了两个词条,在使用分类器前,也需要对词条向量化,然后使用classifyNB()函数,用朴素贝叶斯公式,计算词条向量属于侮辱类和非侮辱类的概率。运行结果如下:

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

你会发现,这样写的算法无法进行分类,p0和p1的计算结果都是0,显然结果错误。这是为什么呢?下一篇文章继续讲解~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值