在煤矿等工业场景中,安全驾驶一直是一个重要的问题。为了提高驾驶员的安全意识和减少事故的发生,我们可以借助计算机视觉和深度学习技术来构建一个安全驾驶预警平台。本文将介绍一种基于YOLOv5的安全驾驶预警平台,并提供相应的源代码。
YOLOv5是一种基于深度学习的目标检测算法,它能够实时高效地检测出图像中的多个目标。我们可以利用YOLOv5来检测煤矿场景中的各种危险因素,比如行人、车辆、障碍物等,并通过实时预警系统提醒驾驶员采取相应的安全措施。
首先,我们需要准备训练数据集。可以收集一些煤矿场景的图像,并手动标注出其中的目标物体和危险因素。标注的数据可以包括目标的边界框坐标和对应的类别标签。根据标注数据,我们可以使用YOLOv5的训练脚本对模型进行训练。
以下是一个简化的YOLOv5训练代码示例:
!git clone https://github.com/ultralytics/yolov5.git