深度学习自动诗歌创作:从数据预处理到模型优化

120 篇文章 25 订阅 ¥59.90 ¥99.00
本文详述了从数据预处理到模型优化的自动诗歌创作过程,涉及数据收集、预处理、RNN语言模型构建及训练,最终实现诗歌生成。
摘要由CSDN通过智能技术生成

自动诗歌创作是深度学习领域的一个有趣而具有挑战性的任务。它涉及将神经网络训练成能够生成有意义的诗歌文本的模型。本文将详细介绍从数据预处理到模型优化的整个过程,并提供相应的源代码。

  1. 数据收集与预处理
    在进行自动诗歌创作之前,我们需要收集并准备训练数据。可以通过爬取诗歌网站或者使用公开可用的诗歌数据集来获取训练数据。接下来,我们需要对数据进行预处理,包括文本清洗、分词和构建词汇表等步骤。

    # 导入所需的库
    import nltk
    from nltk.tokenize import word_tokenize
    from nltk.corpus import stopwords
    from nltk.stem import<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值