概率是数学中一个重要的概念,用于描述事件发生的可能性。在统计学和概率论中,有一些常见的概率公式被广泛使用。本文将介绍几个常见的概率公式,并给出其推导过程和相应的源代码。
-
加法法则
加法法则是概率论中最基本的法则之一,用于计算两个事件同时发生的概率。假设 A 和 B 是两个事件,则它们同时发生的概率可以表示为 P(A ∪ B) = P(A) + P(B) - P(A ∩ B)。其中,P(A) 表示事件 A 发生的概率,P(B) 表示事件 B 发生的概率,P(A ∩ B) 表示事件 A 和 B 同时发生的概率。 -
乘法法则
乘法法则用于计算两个独立事件同时发生的概率。如果事件 A 和事件 B 是独立的,那么它们同时发生的概率可以表示为 P(A ∩ B) = P(A) * P(B)。其中,P(A) 表示事件 A 发生的概率,P(B) 表示事件 B 发生的概率。 -
条件概率
条件概率是指在已知一个事件发生的条件下,另一个事件发生的概率。设事件 A 和事件 B 是两个事件,且事件 B 发生的条件下事件 A 发生的概率可以表示为 P(A|B) = P(A ∩ B) / P(B)。其中,P(A ∩ B) 表示事件 A 和 B 同时发生的概率,P(B) 表示事件 B 发生的概率。 -
贝叶斯定理
贝叶斯定理是一种根据条件概率来计算反向条件概率的公式。假设事件 A 和事件 B