算法-全概率公式、贝叶斯公式详细推导过程

1 条件概率公式
A A A B B B是两个事件,且 P ( B ) > 0 P(B)>0 P(B)>0,则在事件 B B B发生的条件下,事件 A A A发生的条件概率(conditional probability)为:
  P ( A ∣ B ) = P ( A B ) / P ( B ) ( 1 ) \ P(A|B)=P(AB)/P(B)\qquad (1)  P(AB)=P(AB)/P(B)(1)
2 乘法公式
2.1.由条件概率公式得:
  P ( A B ) = P ( A ∣ B ) P ( B ) = P ( B ∣ A ) P ( A ) ( 2 ) \ P(AB)=P(A|B)P(B)=P(B|A)P(A)\qquad (2)  P(AB)=P(AB)P(B)=P(BA)P(A)(2)
2.2.乘法公式的推广:对于任何正整数 n ≥ 2 n≥2 n2,当 P ( A 1 A 2 . . . A n − 1 ) > 0 P(A_1A_2...A_{n-1}) > 0 P(A1A2...An1)>0时,有:
  P ( A 1 A 2 . . . A n − 1 A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) . . . P ( A n ∣ A 1 A 2 . . . A n − 1 ) ( 3 ) \ P(A_1A_2...A_{n-1}A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)...P(A_n|A_1A_2...A_{n-1})\qquad (3)  P(A1A2...An1An)=P(A1)P(A2A1)P(A3A1A2)...P(AnA1A2...An1)(3)
3 全概率公式
3.1. 如果事件组 B 1 B_1 B1 B 2 B_2 B2,… 满足
3.1.1. B 1 B_1 B1 B 2 B_2 B2…两两互斥,即 B i ∩ B j = ϕ B_i \cap B_j = \phi BiBj=ϕ i ≠ j i \neq j i=j i , j = 1 , 2 , . . . . , i,j=1,2,...., i,j=12.... P ( B i ) > 0 , i = 1 , 2 , . . . . ; P(B_i)>0,i=1,2,....; P(Bi)>0,i=1,2,....;
3.1.2. B 1 ∪ B 2 ∪ . . . . = Ω B_1 \cup B_2\cup....=\Omega B1B2....=Ω,则称事件组 B 1 , B 2 , . . . B_1,B_2,... B1,B2,...是样本空间 Ω \Omega Ω的一个划分
B 1 B_1 B1 B 2 B_2 B2…是样本空间 Ω \Omega Ω的一个划分, A A A为任一事件,则:
  P ( A ) = ∑ i = 0 n P ( A ∣ B i ) P ( B i ) ( 4 ) \ P(A)=\sum_{i=0}^n P(A|B_i)P(B_i)\qquad (4)  P(A)=i=0nP(ABi)P(Bi)(4)
3.2. 全概率公式的意义在于,当直接计算 P ( A ) P(A) P(A)较为困难,而 P ( B i ) , P ( A ∣ B i ) ( i = 1 , 2 , . . . ) P(B_i),P(A|B_i) (i=1,2,...) P(Bi),P(ABi)(i=1,2,...)的计算较为简单时,可以利用全概率公式计算 P ( A ) P(A) P(A)。思想就是,将事件 A A A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件 A A A的概率,而将事件 A A A进行分割的时候,不是直接对 A A A进行分割,而是先找到样本空间 Ω \Omega Ω的一个个划分 B 1 B_1 B1 B 2 B_2 B2,…, B n B_n Bn这样事件 A A A就被事件 A B 1 , A B 2 , . . . A B n AB_1,AB_2,...AB_n AB1,AB2,...ABn分解成了 n n n部分,即 A = A B 1 + A B 2 + . . . + A B n A=AB_1+AB_2+...+AB_n A=AB1+AB2+...+ABn, 每一 B i B_i Bi发生都可能导致 A A A发生相应的概率是 P ( A ∣ B i ) P(A|B_i) P(ABi)
4 贝叶斯公式
与全概率公式解决的问题相反,贝叶斯公式是建立在条件概率的基础上寻找事件发生的原因(即大事件 A A A已经发生的条件下,分割中的小事件 B i B_i Bi的概率),设 B 1 , B 2 , . . . B_1,B_2,... B1,B2,...是样本空间 Ω \Omega Ω的一个划分,则对任一事件 A ( P ( A ) > 0 ) A(P(A)>0) AP(A)>0),有
  P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) / P ( A ) ( 4 ) \ P(B_i|A)=P(A|B_i)P(B_i)/P(A)\qquad (4)  P(BiA)=P(ABi)P(Bi)/P(A)(4)
上式即为贝叶斯公式(Bayes formula), B i B_i Bi常被视为导致试验结果 A A A发生的”原因“, P ( B i ) ( i = 1 , 2 , . . . ) P(B_i)(i=1,2,...) P(Bi)(i=1,2,...)表示各种原因发生的可能性大小,故称先验概率; P ( B i ∣ A ) ( i = 1 , 2... ) P(B_i|A)(i=1,2...) P(BiA)(i=1,2...)则反映当试验产生了结果 A A A之后,再对各种原因概率的新认识,故称后验概率。
参考文献
https://www.cnblogs.com/ohshit/p/5629581.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值