什么是亚马逊变体违规?

一、什么是亚马逊变体?

变体是亚马逊平台上的一个概念。指的同款产品的不同型号,比如不同颜色、不同尺寸等,每个尺寸、颜色我们都将之称为-一个变体,共同存在与一条listing中。

良好的变体关系商品信息可让买家根据不同的属性(包括尺寸、颜色或其他特性),通过商品详情页面上提供的选项比较和选择商品。

根据Amazon的官方定义,亚马逊变体是指产品具有父体子体等相关联的产品集。 也就是说亚马逊变体可分为子体和父体,不同的listing可以通过一个父体作为连接,拼成一个全新的listing。父体就像一个绳子的纽带,把所有子体拼在一起。

2fd0a8bd0dcba60afe9e534aa481a810.jpeg

二、合并亚马逊变体有什么好处?

合并变体对产品销量的提升有很大作用,卖家多会借此“以老带新”产品,改善产品评论以及在搜索结果中的排名。具体包括:

1、增加单listing评论数量, 蹭排名, 蹭评价;

推新品时期,listing没有review,会降低产品的转化率,广告转化也不理想。所以合并变体是一种行之有效的推广手段。

2、引流、增加产品的销量

亚马逊是一个重产品轻店铺的平台,消费者们很难会到一个卖家的店铺中去看都有哪些产品,而当将这些产品进行合并后,就可以让看到产品的卖家有同时看到多种型号或者是颜色上的选择,也是一种有利于促进销量的方式。

三、哪几种操作可能存在滥用变体的情况?

1、更改父体或者子体Listing页面,导致描述与产品本身不符;

2、更改父体详情页面,导致与子产品不匹配;

3、添加与父体不匹配的产品,不是父体真正的子体;

4、添加与现在的父体不是一个制造商的子体;

5、合并僵尸Listing;

具体还包括以下操作可判定为滥用变体:

  • 不是基本相同的产品
  • 变体主题的名称命名不正确
  • 将一些长期不在售的ASIN组建到变体中
  • 子商品图片看上去不一致(尤其是主图)
  • 更改商品详情页面(父商品或子商品),导致其与最初发布的商品存在重大差异
  • 翻新listing ,拆掉评分低的子体拉高整个变体 review
  • 该类目不允许创建“变体”
  • 该类目不允许的“变体主题” ;自己增添“变体主题”里没有的主题
  • 为了共享评价:把不同类目的 listing 合并到同一变体里;把不可售的ASIN合并到在售ASIN
  • 更改父商品的商品详情页面,直接导致父商品与子商品属性不匹配;
  • 新产品与老产品链接直接绑定为父子变体
  • 新 ASIN 挂靠老 listing 利用已经获得的排名和 review蹭流量;
  • 创建多条子体,子体上评价之后合并在一起
  • 子体产品的不同点不属于“变体主题”的范畴
  • 完全一样的产品创建多条链接,然后合并在一起
  • 手动添加原本不存在的属性作为变体属性;
  • 把子体的信息更换为其他产品或者需要更新的某种产品

四、合规的变体通常需要满足哪些条件?

对于变体的创建,亚马逊官方可以说是非常严格,符合以下六个准则的商品,才适合建立为一个变体体系:

  • 商品信息准确
  • 商品基本相同共享同一名称
  • 分类支持变体主题:Listing上传时必须有variation选项可选
  • 仅有变体主题属性差别
  • 不存在新旧版本差别

五、违规使用变体可能导致的后果

违规使用变体, 轻则警告, 重则封店铺。

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值