统计与机器学习算法实践
在机器学习领域,有多种强大的算法可用于解决不同类型的问题。本文将详细介绍几种常见的算法,包括使用随机梯度下降分类器(SGDClassifier)进行逻辑回归、朴素贝叶斯算法进行文本分类以及决策树算法进行预测建模,并给出具体的操作步骤和代码示例。
1. 使用SGDClassifier进行逻辑回归
1.1 数据读取与初步探索
首先,我们需要读取数据并进行一些初步的探索。假设我们有一个名为 UCI_Credit_Card.csv 的数据集,以下是具体的代码:
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
# 读取数据
df_creditdata = pd.read_csv("UCI_Credit_Card.csv")
# 查看数据集的基本信息
print(df_creditdata.shape)
print(df_creditdata.head())
# 查看数据类型
print(df_creditdata.dtypes)
# 删除ID列
df_creditdata.drop(["ID"], axis=1,
超级会员免费看
订阅专栏 解锁全文
17万+

被折叠的 条评论
为什么被折叠?



