7、统计与机器学习算法实践

统计与机器学习算法实践

在机器学习领域,有多种强大的算法可用于解决不同类型的问题。本文将详细介绍几种常见的算法,包括使用随机梯度下降分类器(SGDClassifier)进行逻辑回归、朴素贝叶斯算法进行文本分类以及决策树算法进行预测建模,并给出具体的操作步骤和代码示例。

1. 使用SGDClassifier进行逻辑回归
1.1 数据读取与初步探索

首先,我们需要读取数据并进行一些初步的探索。假设我们有一个名为 UCI_Credit_Card.csv 的数据集,以下是具体的代码:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt

# 读取数据
df_creditdata = pd.read_csv("UCI_Credit_Card.csv")

# 查看数据集的基本信息
print(df_creditdata.shape)
print(df_creditdata.head())

# 查看数据类型
print(df_creditdata.dtypes)

# 删除ID列
df_creditdata.drop(["ID"], axis=1,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值