使用 NVIDIA FLARE 进行可扩展联邦学习以增强 LLM 性能
在不断发展的大型语言模型 (LLM) 领域,有效的数据管理是一个关键挑战。 数据是模型性能的核心。 虽然大多数先进的机器学习算法都是以数据为中心的,但必要的数据并不总是集中的。 这是由于多种因素造成的,例如隐私、监管、地缘政治、版权问题以及移动大量数据集所需的巨大努力。
本文探讨了 NVIDIA FLARE 支持的联邦学习 (FL) 如何通过简单且可扩展的集成来应对这些挑战。 这些功能可以对LLM进行有监督的微调和参数高效的微调,以提高其准确性和稳健性。
数据挑战
需要从多个来源访问数据是许多 LLM 任务中的常见场景。 考虑收集不同医院的报告进行医学研究或收集不同机构的财务数据进行分析。 集中此类数据可能不切实际,并且会受到隐私问题、法规和其他障碍的阻碍。 联邦学习提供了一个优雅的解决方案。
联邦学习-Federated learning
FL 已成为解决这些数据挑战的技术。 这种方法通过共享模型而不是原始数据来绕过集中数据的模型训练。 参与的客户在本地使用其私有数据集训练模型,并且更新的模型参数在全球范围内聚合。
这保护了底层数据的隐私,同时使全局模型能够从训练过程中获得的知识中共同受益。 这会产生更稳健和更通用的模型。 有关具体示例,请参阅用于预测 COVID-19 患者临床结果的联邦学习。
FL 提供了多种用于训练 AI 模型的选项。 一般来说,FL 可以训练全局模型,同时保留数据隐私和治理。 培训可以为每个客户进一步定制,提供个性化模型。 除了训练之外,FL 基础设施还可以用于推理和联合评估。
基础模型
基础模型是根据大量通用文本数据进行预训练的。 然而,它们可能并不专门用于特定领域或下游任务。 进一步的微调使这些模型能够适应和专门针对特定领域和任务,使它们在提供特定于领域和任务的结果时更加有效和准确。 这对于发挥它们的潜力并使它们适应各种应用的多样化和不断变化的需求至关重要。
微调技术
有监督微调(SFT)和参数高效微调(PEFT)是两种方法,旨在高效且有效地针对特定领域和任务定制基础模型。 两者都基于基础模型实现了特定于领域和任务的适应。
SFT 微调所有 LLM 参数。 PEFT 尝试添加适应参数或层,同时保持 LLM 参数固定,使其成为一种经济有效且资源高效的选择。 这两种技术在利用LLM的力量进行广泛的应用方面发挥着关键作用,提供量身定制的资源感知解决方案。
FL 用于 LLM 适应
与其他人工智能技术一样,LLM的表现受益于更大、更多样化的