配置 GPU 所需要的重要链接

驱动让 GPU 可以在电脑中被读取,CUDA 用来适配 Python 深度学习框架的版本,一般框架从 CUDA 版本 9.2~11.0 都有支持,不建议装最新的 CUDA,因为可能框架还没有支持到最新版本,同时也不见以装太旧的 CUDA,因为性能与功能可能没有足够的支持。接着是 cuDNN,它支持了一些额外的运算子,实现在 GPU 上计算如卷积等复杂的操作,下载版本的时候也必须得和 CUDA 的版本对齐,不过下载前需要登入 nvidia 官网方可继续下载所需要的压缩文件。

  1. 驱动 - https://www.nvidia.com/Download/index.aspx
  2. CUDA - https://developer.nvidia.com/cuda-toolkit-archive
  3. cuDNN - https://developer.nvidia.com/CUDnn

p.s. cuDNN 指南 - https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html

 

下载并安装完后所可以通过下面指令在终端查看安装结果:

nvcc -V

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Fri-Sep__1_21:55_Central_Daylight_time_2020
Cuda compilation tools, release 10.1, V10.1.172

另外可以通过下面指令查看 GPU 性能与参数:

nvidia-smi

Tue Feb  2 10:48:44 2021       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.165.02   Driver Version: 418.165.02   CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla P40           Off  | 00000000:02:00.0 Off |                    0 |
| N/A   33C    P0    47W / 250W |      0MiB / 22919MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  Tesla P40           Off  | 00000000:03:00.0 Off |                    0 |
| N/A   37C    P0    49W / 250W |      0MiB / 22919MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   2  Tesla P40           Off  | 00000000:82:00.0 Off |                    0 |
| N/A   34C    P0    49W / 250W |      0MiB / 22919MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   3  Tesla P40           Off  | 00000000:83:00.0 Off |                    0 |
| N/A   33C    P0    47W / 250W |      0MiB / 22919MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

 

GPU 环境都配置好之后,接下来就可以安装框架了,去到 PyTorch 或 Tensorflow 官网寻找对应的 CUDA 版本安装对应的框架版本即可,由于 GPU 版本的框架文件都比较大,如果下载过程中因为网络原因不顺畅,建议单独下载安装文件后,再接着本地安装。

  1. PyTorch - https://pytorch.org/get-started/locally/
  2. PyTorch 手动下载 - https://download.pytorch.org/whl/torch_stable.html
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值