驱动让 GPU 可以在电脑中被读取,CUDA 用来适配 Python 深度学习框架的版本,一般框架从 CUDA 版本 9.2~11.0 都有支持,不建议装最新的 CUDA,因为可能框架还没有支持到最新版本,同时也不见以装太旧的 CUDA,因为性能与功能可能没有足够的支持。接着是 cuDNN,它支持了一些额外的运算子,实现在 GPU 上计算如卷积等复杂的操作,下载版本的时候也必须得和 CUDA 的版本对齐,不过下载前需要登入 nvidia 官网方可继续下载所需要的压缩文件。
- 驱动 - https://www.nvidia.com/Download/index.aspx
- CUDA - https://developer.nvidia.com/cuda-toolkit-archive
- cuDNN - https://developer.nvidia.com/CUDnn
p.s. cuDNN 指南 - https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
下载并安装完后所可以通过下面指令在终端查看安装结果:
nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Fri-Sep__1_21:55_Central_Daylight_time_2020
Cuda compilation tools, release 10.1, V10.1.172
另外可以通过下面指令查看 GPU 性能与参数:
nvidia-smi
Tue Feb 2 10:48:44 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.165.02 Driver Version: 418.165.02 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla P40 Off | 00000000:02:00.0 Off | 0 |
| N/A 33C P0 47W / 250W | 0MiB / 22919MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla P40 Off | 00000000:03:00.0 Off | 0 |
| N/A 37C P0 49W / 250W | 0MiB / 22919MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla P40 Off | 00000000:82:00.0 Off | 0 |
| N/A 34C P0 49W / 250W | 0MiB / 22919MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla P40 Off | 00000000:83:00.0 Off | 0 |
| N/A 33C P0 47W / 250W | 0MiB / 22919MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
GPU 环境都配置好之后,接下来就可以安装框架了,去到 PyTorch 或 Tensorflow 官网寻找对应的 CUDA 版本安装对应的框架版本即可,由于 GPU 版本的框架文件都比较大,如果下载过程中因为网络原因不顺畅,建议单独下载安装文件后,再接着本地安装。
- PyTorch - https://pytorch.org/get-started/locally/
- PyTorch 手动下载 - https://download.pytorch.org/whl/torch_stable.html