Prototypical Networks for Few-shot Learning

摘要

我们为少样本分类问题提出了原型网络,其中分类器必须泛化到训练集中没有看到的新类,每个新类只给出少量示例。原型网络学习一个度量空间,其中可以通过计算到每个类的原型表示的距离来执行分类。与最近的小样本学习方法相比,它们反映了一种更简单的归纳偏差,这在这种有限数据的情况下是有益的,并取得了出色的结果。我们提供的分析表明,与最近涉及复杂架构选择和元学习的方法相比,一些简单的设计决策可以产生实质性的改进。我们进一步将原型网络扩展到零样本学习,并在 CU-Birds 数据集上实现了最先进的结果

介绍

我们通过解决过度拟合的关键问题来解决小样本学习的问题。由于数据非常有限,我们假设分类器应该有一个非常简单的归纳偏差(模型的指导准则)。我们的方法,原型网络,基于这样的想法,即存在一个嵌入,其中点围绕每个类的单个原型表示聚集。为了做到这一点,我们使用神经网络学习输入到嵌入空间的非线性映射,并将类的原型作为其在嵌入空间中的支持集的平均值。然后通过简单地找到最近的类原型对嵌入的查询点执行分类
(神经网络学习输入到非线性空间的非线性映射
类原型作为其在嵌入空间中的主持集的平均值
简单找到最近的类原型对嵌入的查询点执行分类

我们采用相同的方法来解决零样本学习;这里每个类都带有提供类的高级描述的元数据,而不是少量的标记示例。因此,我们学习将元数据嵌入到共享空间中,作为每个类的原型。分类是通过为嵌入的查询点找到最近的类原型来执行的,就像在小样本场景中一样。

  • 每个类都带有提供类的高级描述的元数据。
  • 将元数据嵌入到共享空间中。(每个类的原型)
  • 嵌入的查询点找到最近的类原型。来执行。
    在这里插入图片描述

Method

原型网络通过嵌入函数 f ϕ : R D → R M f_{\phi}:RD\rightarrow RM fϕ:RDRM
和可学习参数 ϕ \phi ϕ,计算每个类的 M M M维表示, c k ∈ R M ck \in RM ckRM或原型,
每个原型都属于其类的嵌入支持点的平均向量
在这里插入图片描述
给定距离函数 d : R M × R M → [ 0 , ∞ ) d:RM \times RM \rightarrow [0,\infty) d:RM×RM[0,)
原型网络基于到嵌入空间中原型的距离上的softmax上的生成查询点 x x x的类分布。
在这里插入图片描述
通过SGD最小化真实类的 k k k,的负对数概率进行学习
在这里插入图片描述

算法流程

在这里插入图片描述
大致了解了。然后再从原始论文中迭代,将其看完整都行啦的样子与打算。全部都将其搞定都行啦的样子与。
慢慢的将其研究透彻都行啦的的样子与打算。

总结

利用距离函数和softmax函数来设计概率分布,进行学习与研究。全部都将其搞定都行啦的样子与打算。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

big_matster

您的鼓励,是给予我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值