Flink 双流Join

 comapjoin示例


public class ConnectedStreamFlatMapSolution {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // control 会被 flatMap1 处理
        // 从 streamOfWords 流中过滤出不在 control 流中的单词
        DataStream<String> control = env.fromElements("DROP", "IGNORE").keyBy(x -> x);
        // streamOfWords 会被 flatMap2 处理
        // 因为 data 和 artisans 单词不在 control 流中,所以其状态在 flatMap1 中为 null,不为 TRUE,因此 streamOfWords 在调用 flatMap2 时满足 blocked.value() == null, 则会被输出
        DataStream<String> streamOfWords = env.fromElements("data", "DROP", "artisans", "IGNORE").keyBy(x -> x);
        // control 流连接 streamOfWords 流,两个流都是以单词做 keyBy,即 key 值为单词
        control
                .connect(streamOfWords)
                .flatMap(new ControlFunction())
                .print();
        env.execute();
    }
    public static class ControlFunction extends RichCoFlatMapFunction<String, String, String> {
        // key 状态使用 Boolean 值保存,blocked 用于判断每个单词是否在 control 流中
        private ValueState<Boolean> blocked;
        @Override
        public void open(Configuration config) {
            blocked = getRuntimeContext().getState(new ValueStateDescriptor<>("blocked", Boolean.class));
        }
        // control.connect(streamOfWords) 表明 control 流中的元素会被 flatMap1 处理,streamOfWords 流中的元素会被 flatMap2 处理
        @Override
        public void flatMap1(String control_value, Collector<String> out) throws Exception {
            blocked.update(Boolean.TRUE);
        }
        // 对于不在 control 流中的元素,其状态不为 TRUE,即 blocked.value() == null,从而被 flatMap2 处理时,会被 out 输出
        @Override
        public void flatMap2(String data_value, Collector<String> out) throws Exception {
            if (blocked.value() == null) {
                out.collect(data_value);
            }
        }
    }
}
import org.apache.flink.api.common.state.{ValueState, ValueStateDescriptor}
import org.apache.flink.api.scala.typeutils.Types
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.co.KeyedCoProcessFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.util.Collector


/**
 * $CONTENT
将五分钟之内的订单信息和支付信息进行对账,对不上的发出警告
 
 */
object TwoStreamJoinDemo {

    // 订单支付事件
    case class OrderEvent(orderId: String,
                                                eventType: String,
                                                eventTime: Long)

    // 第三方支付事件,例如微信,支付宝
    case class PayEvent(orderId: String,
                                            eventType: String,
                                            eventTime: Long)

    // 用来输出没有匹配到的订单支付事件
    val unmatchedOrders = new OutputTag[String]("unmatched-orders")
    // 用来输出没有匹配到的第三方支付事件
    val unmatchedPays = new OutputTag[String]("unmatched-pays")

    def main(args: Array[String]): Unit = {
        val env = StreamExecutionEnvironment.getExecutionEnvironment
        env.setParallelism(1)
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

        val orders: KeyedStream[OrderEvent, String] = env
            .fromElements(
                OrderEvent("order_1", "pay", 2000L),
                OrderEvent("order_2", "pay", 5000L),
                OrderEvent("order_3", "pay", 6000L)
            )
            .assignAscendingTimestamps(_.eventTime)
            .keyBy(_.orderId)

        val pays: KeyedStream[PayEvent, String] = env
            .fromElements(
                PayEvent("order_1", "weixin", 7000L),
                PayEvent("order_2", "weixin", 8000L),
                PayEvent("order_4", "weixin", 9000L)
            )
            .assignAscendingTimestamps(_.eventTime)
            .keyBy(_.orderId)

        val processed = orders.connect(pays).process(new MatchFunction)

        processed.print()

        processed.getSideOutput(unmatchedOrders).print()

        processed.getSideOutput(unmatchedPays).print()

        env.execute()
    }

    //进入同一条流中的数据肯定是同一个key,即OrderId
    class MatchFunction extends KeyedCoProcessFunction[String, OrderEvent, PayEvent, String] {
        lazy private val orderState: ValueState[OrderEvent] = getRuntimeContext.getState(new ValueStateDescriptor[OrderEvent]("orderState", Types.of[OrderEvent]))
        lazy private val payState: ValueState[PayEvent] = getRuntimeContext.getState(new ValueStateDescriptor[PayEvent]("payState", Types.of[PayEvent]))

        override def processElement1(value: OrderEvent, ctx: KeyedCoProcessFunction[String, OrderEvent, PayEvent, String]#Context, out: Collector[String]): Unit = {
            //从payState中查找数据,如果存在,说明匹配成功
            val pay = payState.value()
            if (pay != null) {
                payState.clear()
                out.collect("订单ID为 " + pay.orderId + " 的两条流对账成功!")
            } else {
                //如果不存在,则说明可能对应的pay数据没有来,需要存入状态等待
                //定义一个5min的定时器,到时候再匹配,如果还没匹配上,则说明匹配失败发出警告
                orderState.update(value)
                ctx.timerService().registerEventTimeTimer(value.eventTime + 5000)
            }
        }

        override def processElement2(value: _root_.project.TwoStreamJoinDemo.PayEvent, ctx: _root_.org.apache.flink.streaming.api.functions.co.KeyedCoProcessFunction[_root_.scala.Predef.String, _root_.project.TwoStreamJoinDemo.OrderEvent, _root_.project.TwoStreamJoinDemo.PayEvent, _root_.scala.Predef.String]#Context, out: _root_.org.apache.flink.util.Collector[_root_.scala.Predef.String]): Unit = {
            val order = orderState.value()
            if (order != null) {
                orderState.clear()
                out.collect("订单ID为 " + order.orderId + " 的两条流对账成功!")
            } else {
                payState.update(value)
                ctx.timerService().registerEventTimeTimer(value.eventTime + 5000)
            }
        }

        override def onTimer(timestamp: Long, ctx: KeyedCoProcessFunction[String, OrderEvent, PayEvent, String]#OnTimerContext, out: Collector[String]): Unit = {
            if (orderState.value() != null) {
                //将警告信息发送到侧输出流中
                ctx.output(unmatchedOrders,s"订单ID为 ${orderState.value().orderId } 的两条流没有对账成功!")
                orderState.clear()
            }
            if (payState.value() != null){
                ctx.output(unmatchedPays,s"订单ID为 ${payState.value().orderId } 的两条流没有对账成功!")
                payState.clear()
            }

        }
    }

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值