第六题 棋盘变化:
小蓝拥有n x n大小的棋盘,一开始棋盘上全都是白子。小蓝进行了m次操作,每次操作会将棋盘上某个范围内的所有棋子的颜色取反(也就是白色棋子变为黑色,黑色棋子变为白色)。请输出所有操作做完之后棋盘上每个棋子的颜色。
问题分析:
首先,根据题意可知,最简单的做法就是采用双层循环进行暴力求解,但时间复杂度较高,为o(n ** 2)。因为是对某个范围内的所有棋子做统一的变化,故我们可以利用差分数组来进行算法优化。差分数组对专门用于处理对某个范围内进行统一变化的问题,具体关于差分数组的内容可以见下:算法之路-------差分数组-CSDN博客 。本题所需要的棋盘为一个二维数组,故需要二维差分数组D,与一维差分数组相区别的是,二维中的数的计算方式为D[i][j] = A[i][j] - A[i - 1][j] - A[i][j - 1] + A[i - 1][j - 1],D为二维差分数组,A为原始数组。
代码如下:
import os import sys n, m = map(int, input().split()) # 构建一个(n+2) x (n + 2)的差分数组 diff = [[0] * (n + 2) for _ in range(n+2)] # 计算每次操作后差分数组的变化 for _ in range(m): x1, y1, x2, y2 = map(int, input().split()) diff[x1][y1] += 1 diff[min(x2 + 1, n + 1)][y1] -= 1 diff[x1][min(y2 + 1, n + 1)] -= 1 diff[min(x2 + 1, n + 1)][min(y2 + 1, n + 1)] += 1 # 计算最终的棋盘 for i in range(1, n+1): for j in range(1, n+1): diff[i][j] += diff[i - 1][j] + diff[i][j - 1] - diff[i - 1][j - 1] print(1 if diff[i][j] % 2 == 1 else 0, end='') print()
第七题 填充 :
问题分析:
本题跟第五题类似,是对于字符串的遍历类型。本题一次比对的字符数为三个,故可以采用三指针的方法来求解。
代码如下:
import os import sys D = int(input()) # 将输入的字符串存成列表的形式,即:[1,0,0,0,1,1,1] T = [] S = [] for _ in range(D): temp1 = input() temp2 = input() T.append([int(i) for i in temp1]) S.append([int(i) for i in temp2]) for i in range(D): # 如果字符串长度小于3,直接输出-1 n = len(T[i]) if n < 3: print(-1) continue #定义计数器 counter = 0 # 定义三个指针 left = 0 mid = left + 1 right = mid + 1 # 以最右边的指针为循环边界 while right < len(T[i]): # 判断中间的数是否和两边的都不同 if S[i][mid] != S[i][left] and S[i][mid] != S[i][right]: # 与T中的数进行比较,不同则进行翻转 if S[i][mid] != T[i][mid]: S[i][mid] = T[i][mid] counter += 1 left += 1 mid += 1 right += 1 # 循环结束后,若S和T相等则输出counter,否则输出-1 if S[i] == T[i]: print(counter) else: print(-1)