Canny 边缘检测是一种经典的图像处理技术,被广泛应用于计算机视觉和图像处理领域。它由 John F. Canny 在 1986 年提出,是一种多阶段的边缘检测算法,具有高精度和低错误率的特点。
Canny 边缘检测的步骤:
-
高斯滤波(Gaussian Blur):
- Canny 边缘检测首先对图像进行高斯平滑处理,以减少图像中的噪声。高斯滤波器将图像中的每个像素与周围像素进行加权平均,从而模糊图像并减少噪声。
-
计算图像梯度:
- 在经过高斯滤波处理后,Canny 算法使用 Sobel 算子计算图像中每个像素的梯度强度和方向。梯度的方向与边缘的方向垂直,因此可以用于检测图像中的边缘。
-
非最大抑制(Non-Maximum Suppression):
- 在计算梯度之后,Canny 算法对图像进行非最大抑制处理。这一步骤通过在梯度方向上对像素进行比较,保留局部梯度最大的像素,从而细化边缘,提高边缘的细节和准确性。
-
双阈值检测(Double Thresholding):
- Canny 边缘检测使用两个阈值来确定边缘像素是否为真实边缘。通常将梯度幅值分为两个阈值:高阈值和低阈值。如果像素的梯度幅值超过高阈值,则被认为是强边缘;如果梯度幅值低于低阈值,则被认为是弱边缘;如果梯度幅值在两个阈值之间,则被标记为潜在边缘。