YOLO-V5 算法和代码解析系列 —— 学习路线规划综述

为什么学习 YOLO-V5 ?

  1. 算法性能:与YOLO系列(V1,V2,V3,V4)相比,YOLO-V5效果最好,速度最快。
  2. 项目质量:自项目开源,作者一直精心维护,优化,更新,目前已经更新到V7版本,项目整体质量非常高。
  3. 工业部署:在工业界,要能够部署到低性能设备,并且保证效果和速度。为此,模型不能太大、不能有特别复杂、奇怪的网络模块,速度和效果不能受影响太大,芯片设计的支持(很多NPU厂商均将YOLO-V5作为测试Demo)。YOLO-V5满足所有这些需求,所以非常适合工业界部署和落地。
  4. 适合学习:该项目一直在维护,作者会回答【git issue】上提出的任何问题。参与开发和使用的人很多,所以相关学习资源非常丰富,适合新手或者一定工作经验的同学长期学习。

博客文章列表

  本系列教程,使用【YOLO-V5,V6.1】版本进行算法和代码的讲解。下面是该教程的文章更新列表,

  1. YOLO-V5 算法和代码解析系列(一)—— <快速开始(已更新)
  2. YOLO-V5 算法和代码解析系列(二)—— 【train.py】核心内容(已更新)
  3. YOLO-V5 算法和代码解析系列(三)—— 数据加载(已更新)
  4. YOLO-V5 算法和代码解析系列(四)—— 网络结构(已更新)
  5. YOLO-V5 算法和代码解析系列(五)—— 损失函数(已更新)
  6. YOLO-V5 系列算法和代码解析(六)—— 分布式训练(已更新)
  7. YOLO-V5 算法和代码解析系列(七)—— 指标评估(已更新)
  8. YOLO-V5 算法和代码解析系列(八)—— 自定义数据集(待更新)
  9. YOLO-V5 算法和代码解析系列(九)—— 训练自定义数据(待更新)
  10. YOLO-V5 算法和代码解析系列(十)—— 瑞芯微芯片部署(已更新)

面向对象

  (1)有一定深度学习、python基础,打算系统、深入学习 YOLO-V5;
  (2)有一定工作经验的同学,希望进一步提升自己,比如如何阅读开源项目,深入学习目标检测等;
  (3)工作过程中,需要在低性能设备端部署目标检测模型,特别是部署芯片为瑞芯微;

开源项目学习方法

  在个人学习开源项目过程中,通过不断尝试、探索、思考和总结,归纳出开源项目学习的一般方法(仅仅针对深度学习类项目)。学习过程中,可以结合自己的实际情况进行调整。具体学习流程如下,

  1. 运行 Demo
    在接触任何一个开源项目之前,必然是将项目成功运行起来,先睹(可视化效果)为快。在当前步骤的学习中,应该达到如下的【目标】,

    (1)参考开源项目的【README.md】,配置项目的运行环境;
    (2)运行demo示例,能够得到可视化结果,比如运行 detect.py,inference.py 等代码文件;

  2. 简单训练一次
    按照开源项目的训练教程,自己训练一次,并计算性能指标。具体完成内容如下,

    (1)准备训练所需数据集;
    (2)调试训练代码,保证可以正常运行;
    (3)运行 train.py,训练模型,与作者的结果进行比对,误差在【2%】左右,可以接受;

  3. 第一次阅读代码
    完成【1.,2.】后,说明开源代码基本没有大问题,可以进一步深入学习。此时可以开始阅读代码,遇到的任何问题均需要记录(要做记录,要做记录,要做记录),并且要达到如下的【目标】:

    (1)理清训练代码(注意,不是预测代码)的整体运行逻辑,彼此之间的调用关系;
    (2)核心模块的代码位置:主运行模块,数据加载和数据增强模块,网络结构模块,损失函数模块;
    (3)阅读过程中,一定要做好【记录】,问题点大致分为如下几类:
         疑问点(阅读过程中,自己产生的任何问题,均需要记录,带着问题学习很重要,后续也可以反复看看);
         典型知识点(可以理解清楚,但是需要系统总结的知识点);
         困惑点(比较难以理解,感觉理解了,有时又感觉没有理解清楚);
         困难点(反复研究,仍无法理解的算法或者代码实现逻辑);

  4. 第二次阅读代码
    完成【3.】后,对项目整体的逻辑和结构,不理解的问题点有了大致的了解,但是对各个模块的实现细节不清楚。接下来,需要逐个模块研究,各个击破。注意,此时要着重解决【3.】中记录的【困惑点、困难点】问题,并在文档中记录解决的方法。该步骤需要达到的目标,具体如下:

    (1)数据加载模块:数据加载是深度学习训练的重要部分,直接决定训练的效率;必须深入理解数据加载通道的每一个环节;
    (2)数据增强模块:基本是图像处理类算法,理解每类算法的精髓,调试出可视化结果;
    (3)网络结构模块:包含网络的构建过程,网络推理过程,最后手动完成网络结构绘制;
    (4)损失函数模块:理解损失函数的是如何构造的,作用,与网络输出是如何运算的;

  5. 第三次阅读代码
    完成【4.】后,基本对整体的逻辑,并且每一个模块的核心都基本理解,或许还会在某个模块的某个知识点不是很理解。在此次阅读代码过程中,应达到如下目的:

    (1)从更高层次,重点学习、理解开源项目的整体设计架构,汲取自己所需;
    (2)总结一些特殊的实现技巧,优化技巧等;
    (3)对还有疑惑的知识点,核心模块,可以进一步思考,理解,并更新之前的记录;

  6. 写博客
    如果有兴趣、有时间,可以写博客记录,进一步加深自己的理解,也能帮助其它小伙伴学习~~

预备知识

  1. 深度学习基础知识
  2. OpenCV基础知识
  3. Pytorch基础知识
  4. vscode、pycharm 基本调试方法

项目目录结构

  1. 项目的组织结构
    项目的一级目录如下图所示,每个目录具有各自的功能。一个开源项目的常见组织结构大致如此,

    【data/】:数据相关,比如数据下载,数据存放位置等
    【models/】:实现各种网络结构,定义网络的配置文件等
    【utils/】:辅助功能函数,比如数据增强,损失函数实现等
    【detect.py】:推理的脚本,输入可以是图片,视频等
    【export.py】:导出为其它格式的模型,比如ONNX,TensorRT,TFLite等
    【val.py】:评估模型的性能,计算相关的性能指标
    在这里插入图片描述

    一级目录【./data/】,包含内容如下:

    hyps/:定义网络训练的各种参数
    images/:测试图片
    scripts/:下载数据的 sh 脚本
    coco.yaml:训练数据的存放路径
    在这里插入图片描述

    一级目录【./models】的内容如下,

    hub/:其它模型结构的配置文件
    common.py,yolo.py:模型的构建脚本,基础网络模块的定义
    yolov5s.yaml:模型的配置文件
    在这里插入图片描述

    一级目录【./utils】的内容如下,

    augmentations.py:实现数据增强功能
    autoanchor.py:根据训练集,自动计算Anchor
    loss.py:损失函数的定义、计算

    在这里插入图片描述

  2. 核心模块
    下面的思维导图,大致展示了YOLO-V5的核心模块,以及核心模块相关的核心知识点。开始阅读代码时,应该优先研究核心模块,掌握该项目的核心算法(切勿一开始把精力浪费在边缘功能模块)。思维导图的最后一级对应着YOLO-V5的关键模块,要着重理解,
    在这里插入图片描述

  3. 学习的相关文档记录
    在学习该项目过程中,根据记录内容的不同,建立了相应的文件类型(比如,word,思维导图,PPT,流程图等)。所有的记录文档如下图所示,
    在这里插入图片描述
    在阅读开始时,文档【YOLOV5阅读记录.docx】就开始记录内容。学习过程中,逐步丰富内容,记录了很多问题点,知识点。随着每一次深度阅读代码,一些难点问题逐渐被攻克,并且记录了解决的方法(每一次阅读会逐步修正之前错误的理解,或者浅显的理解)。个人认为,这种学习方法非常有助于【真正透彻理解】一个完整的开源工程。文档截图展示如下(内容可能看不清,这不重要哈~~~),

    在这里插入图片描述

yolo-v5系列算法是一种基于深度学习的目标检测算法,其通过将输入图像划分为一系列网格单元,并对每个单元预测出目标的类别和边界框,从而实现对图像中目标的检测和定位。 模型移植是指将训练好的yolo-v5模型从一个平台或框架移植到另一个平台或框架的过程。在实际应用中,由于硬件设备或软件平台的限制,往往需要将模型移植到适用于特定平台的框架上,以便进行推理和应用。 模型移植的主要步骤包括模型导出、模型转换和模型部署。首先,需要将yolo-v5模型导出为通用的模型文件,例如ONNX或TensorFlow格式。然后,利用模型转换工具将导出的模型文件转换为目标平台所支持的模型格式,如Tensorflow Lite或Caffe等。最后,将转换后的模型部署到目标平台上,以便进行推理和应用。 模型移植的关键问题是确保模型在移植过程中的准确性和效率。为了保持模型的准确性,需要注意模型转换过程中参数的正确性和一致性。同时,还需要针对目标平台的硬件设备和软件框架进行优化,以提高模型在目标平台上的推理速度和性能。 总而言之,yolo-v5系列算法的模型移植是将训练好的模型从一个平台移植到另一个平台的过程。通过合理的模型导出、转换和部署步骤,可以将yolo-v5模型应用于不同的硬件设备和软件平台,以实现目标检测和定位的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值