Day 1 | 704. Binary Search | 27. Remove Element | 35. Search Insert Position | 34. First and Last Position of Element in Sorted Array
Day 2 | 977. Squares of a Sorted Array | 209. Minimum Size Subarray Sum | 59. Spiral Matrix II
Day 3 | 203. Remove Linked List Elements | 707. Design Linked List | 206. Reverse Linked List
Day 4 | 24. Swap Nodes in Pairs| 19. Remove Nth Node From End of List| 160.Intersection of Two Lists
Day 6 | 242. Valid Anagram | 349. Intersection of Two Arrays | 202. Happy Numbe | 1. Two Sum
Day 7 | 454. 4Sum II | 383. Ransom Note | 15. 3Sum | 18. 4Sum
Day 8 | 344. Reverse String | 541. Reverse String II | 替换空格 | 151.Reverse Words in a String | 左旋转字符串
Day 9 | 28. Find the Index of the First Occurrence in a String | 459. Repeated Substring Pattern
Day 10 | 232. Implement Queue using Stacks | 225. Implement Stack using Queue
Day 11 | 20. Valid Parentheses | 1047. Remove All Adjacent Duplicates In String | 150. Evaluate RPN
Day 13 | 239. Sliding Window Maximum | 347. Top K Frequent Elements
Day 14 | 144.Binary Tree Preorder Traversal | 94.Binary Tree Inorder Traversal| 145.Binary Tree Postorder Traversal
Day 15 | 102. Binary Tree Level Order Traversal | 226. Invert Binary Tree | 101. Symmetric Tree
Day 16 | 104.MaximumDepth of BinaryTree| 111.MinimumDepth of BinaryTree| 222.CountComplete TreeNodes
Day 17 | 110. Balanced Binary Tree | 257. Binary Tree Paths | 404. Sum of Left Leaves
Day 18 | 513. Find Bottom Left Tree Value | 112. Path Sum | 105&106. Construct Binary Tree
Day 20 | 654. Maximum Binary Tree | 617. Merge Two Binary Trees | 700.Search in a Binary Search Tree
Day 21 | 530. Minimum Absolute Difference in BST | 501. Find Mode in Binary Search Tree | 236. Lowes
Day 22 | 235. Lowest Common Ancestor of a BST | 701. Insert into a BST | 450. Delete Node in a BST
Day 23 | 669. Trim a BST | 108. Convert Sorted Array to BST | 538. Convert BST to Greater Tree
Day 24 | 77. Combinations
Day 25 | 216. Combination Sum III | 17. Letter Combinations of a Phone Number
Day 27 | 39. Combination Sum | 40. Combination Sum II | 131. Palindrome Partitioning
Day 28 | 93. Restore IP Addresses | 78. Subsets | 90. Subsets II
Day 29 | 491. Non-decreasing Subsequences | 46. Permutations | 47. Permutations II
Day 30 | 332. Reconstruct Itinerary | 51. N-Queens | 37. Sudoku Solver
Day 31 | 455. Assign Cookies | 376. Wiggle Subsequence | 53. Maximum Subarray
Day 32 | 122. Best Time to Buy and Sell Stock II | 55. Jump Game | 45. Jump Game II
Day 34 | 1005. Maximize Sum Of Array After K Negations | 134. Gas Station | 135. Candy
Day 35 | 860. Lemonade Change | 406. Queue Reconstruction by Height | 452. Minimum Number of Arrows
Day 36 | 435. Non-overlapping Intervals | 763. Partition Labels | 56. Merge Intervals
Directory
LeetCode 738. Monotone Increasing Digits
class Solution {
public int monotoneIncreasingDigits(int n) {
String s = String.valueOf(n);
char[] chars = s.toCharArray();
int start = s.length();
for(int i = s.length() - 2; i >= 0; i--){
if(chars[i] > chars[i+1]){
chars[i]--;
start = i + 1;
}
}
for(int i = start; i < s.length(); i++)
chars[i] = '9';
return Integer.parseInt(String.valueOf(chars));
}
}
- When meeting
chars[i - 1] > chars[i]
, letchars[i-1]--
and setchars[i]
as9
. That can ensure these two digits become the largest monotone-increasing integers - The traverse order is
from back to front
. Because if we traversefrom front to back
, we can’t reuse the result of the last compare
LeetCode 714. Best Time to Buy and Sell Stock with Transaction Fee
class Solution {
public int maxProfit(int[] prices, int fee) {
int buy = prices[0] + fee;
int sum = 0;
for(int p : prices){
if(p + fee < buy)
buy = p + fee;
else if(p > buy){
sum += p - buy;
buy = p;
}
}
return sum;
}
}
LeetCode 968. BT Camera
class Solution {
int res = 0;
public int minCameraCover(TreeNode root) {
if(traverse(root) == 0)
res++;
return res;
}
int traverse(TreeNode root){
if(root == null)
return 2; // By default, empty nodes have coverage to avoid install cameras on the leaf
int left = traverse(root.left);
int right = traverse(root.right);
if(left == 2 && right == 2)
return 0;
else if(left == 0 || right == 0){
res++;
return 1;
}else
return 2;
}
}
- The status of nodes:
0
means no coverage1
means the node has the camera2
means the node has coverage
- By default, empty nodes have coverage to avoid installing cameras on the leaf