【Pytorch】torch.expand()函数解析

x = torch.Tensor([[1], [2]])
print(x.size())
print(x)
y=x.expand(2,10) 
print(x.size())
y.size()
#输出
torch.Size([2, 1])
tensor([[1.],
        [2.]])
torch.Size([2, 1])
torch.Size([2, 10])

尝试修改x的第一个元素,并打印查看效果

x[0]=-1
x
#输出
tensor([[-1.],
        [ 2.]])

随后查看y元素(由x经过expand得到的tensor)

y
#输出
tensor([[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
        [ 2.,  2.,  2.,  2.,  2.,  2.,  2.,  2.,  2.,  2.]])

通过上述实验,可以发现,经过expand得到的tensor会受原tensor的影响,由某元素expand得到的新元素的值始终与原来的元素的值保持一致,expand得到的仅仅是一个视图,不创建新元素,不占据新空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值