微积分方程
前言
微分方程包括线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程的作用就是找出问题中的已知数和未知数之间的关系,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。
1.微分方程的基础及其应用
微分方程包括线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程的作用就是找出问题中的已知数和未知数之间的关系,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。
1.1微分方程的概念
未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程。如果未知函数是一元函数,称为常微分方程。常微分方程的一般形式为
如果未知函数是多元函数,成为偏微分方程。微分方程中出现未知函数的导数最高阶解数称为微分方程的阶。若方程中未知函数及其各阶导数都是一次的,称为线性常微分方程,一般表示为
若上式中的系数均与t无关,称之为常系数。
1.2常微分方程的解
在MATLAB中,函数ode45、ode23、ode113、ode15s、ode23s、ode23t、ode23tb多用于求常微分方程(ODE)组初值问题的数值解。
求解具体ODE的基本过程:
1.根据问题所属学科中的规律、定律、公式,用微分方程与初始条件进行描述。
2.运用数学中的变量替换:yn=y(n-1),yn-1=y(n-2),…,y2=y1=y,把高阶(大于2阶)的方程(组)写成一阶微分方程组:
3.根据1与2的结果,编写能计算导数的M文件odefile。
4.将文件odefile与初始条件传递给求解器Solver,运行后就可得到ODE的、在指定时间区间上的解列向量y(其中包含y及不同阶的导数)。
1.3微分方程的数值解法
除常系数线性微分方程可用特征根法求解、少数特殊方程可用初等积分法求解以外,大部分微分方程的求解主要依靠数值解法。
考虑一阶常微分方程初值问题
其中
所谓数值解法,就是寻求y(t)在一系列离散节点上的近似值。
1.4偏微分方程的数值解
MATLAB提供了一个专门用于求解偏微分方程的工具箱—PDE Toolbox (Paticial Difference Equation )。
下面仅提供一些最简单、经典的偏微分方程,如:椭圆型、双曲型、抛物型等少数的偏微分方程,并给出求解方法。用户可以从中了解其解题基本方法,从而解决相类似的问题。
Matlab能解决的偏微分类型有:
1.单的Poission方程
Poission方程是特殊的椭圆型方程:
即oission的解析解为:在下面计算中,用求得的数值解与精确解进行比较,看误差如何。
Matlab能求解的类型&