神经网络工具箱
1.神经网络MATLAB工具箱
神经网络工具箱几乎包括了现有神经网络的最新成果,神经网络工具箱模型包括:
- 感知器;
- 线性网络;
- BP网络;
- 径向基函数网络;
- 竞争型神经网络;
- 自组织网络和学习向量量化网络;
- 反馈网络。
1.1 感知器工具箱的函数
MATLAB的神经网络工具箱中提供了大量的感知器函数,下面我们将对这些函数的功能、调用格式、使用方法及注意事项做详细说明。
常用感知器函数见下表所示。
1.2 线性神经网络工具箱函数
MATLAB神经网络工具箱为线性网络提供了大量用于网络设计、创建、分析、训练和仿真等函数。下面对这些函数的功能和使用方法进行详细介绍。
在MATLAB中与线性神经网络相关的工具箱函数如下表所示。
(1)newlind
该函数的作用是设计一个线性网络,其使用格式如下:
net=newlind(P,T)
(2)newlin
该函数的作用是建立一个线性网络。其使用格式如下所示:
net=newlin(PR,S,ID,LR) %建立一个新的线性网络
net=newlin(PR,S,0,P)%返回一个对输入P具有最大稳定学习率的线性网络
(3)purelin
该函数是线性传输函数,可根据网络的输入计算线性层的输出。其使用格式如下:
A=purelin§ %返回与输入向量对应的值
info=purelin(code) %返回与每一个code代码对应的有用信息
(4)learnwh