介绍
在深度学习中,卷积神经网络(CNN或ConvNet)是一类人工神经网络(ANN),最常用于分析视觉图像。
CNN 也称为移位不变或空间不变人工神经网络(Shift Invariant or Space Invariant Artificial Neural Networks ,SIANN ),它基于卷积核或滤波器的共享权重架构,沿输入特征滑动并提供称为特征映射的平移等变响应。它们在图像和视频识别、推荐系统、图像分类、图像分割、医学图像分析、自然语言处理、脑机接口和金融时间序列中都有应用。
CNN 是多层感知器的正则化版本。多层感知器通常表示全连接网络,即一层中的每个神经元都连接到下一层中的所有神经元。这些网络的“完全连通性”使它们容易过度拟合数
本文介绍了多个使用Verilog在FPGA上实现卷积神经网络(CNN)硬件加速的开源项目,包括CNN_Hardware_Accelerator_for_FPGA、Convolution_Network_on_FPGA、CNN-FPGA等。这些项目展示了如何通过硬件加速技术提高CNN的推理速度,涉及到卷积、池化等关键操作,并提供了详细的文档和设计实现。项目使用了各种FPGA开发工具如Xilinx Vivado、ISE等,并支持不同的CNN层和运算,适合学习和实践CNN硬件加速。
订阅专栏 解锁全文
4780

被折叠的 条评论
为什么被折叠?



