优秀的 Verilog/FPGA开源项目介绍(二十一)- 卷积神经网络(CNN)

本文介绍了多个使用Verilog在FPGA上实现卷积神经网络(CNN)硬件加速的开源项目,包括CNN_Hardware_Accelerator_for_FPGA、Convolution_Network_on_FPGA、CNN-FPGA等。这些项目展示了如何通过硬件加速技术提高CNN的推理速度,涉及到卷积、池化等关键操作,并提供了详细的文档和设计实现。项目使用了各种FPGA开发工具如Xilinx Vivado、ISE等,并支持不同的CNN层和运算,适合学习和实践CNN硬件加速。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


85701b59e6dc5c3a9d35cd2dd6e5d260.png

介绍

在深度学习中,卷积神经网络(CNN或ConvNet)是一类人工神经网络(ANN),最常用于分析视觉图像。

bc9faa9cbdd54be676e9cd4a1421327a.png

CNN 也称为移位不变或空间不变人工神经网络(Shift Invariant or Space Invariant Artificial Neural Networks ,SIANN ),它基于卷积核或滤波器的共享权重架构,沿输入特征滑动并提供称为特征映射的平移等变响应。它们在图像和视频识别、推荐系统、图像分类、图像分割、医学图像分析、自然语言处理、脑机接口和金融时间序列中都有应用。

aafe54bda4f20d3018c6f018d4310da9.png

CNN 是多层感知器的正则化版

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OpenFPGA

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值