小智大模型应用分享系列:从开源大模型到私有化大模型的定制之路

一、为什么要做私有化模型部署?

首先了解,什么是开源大模型?

开源大模型是基于开放源代码和共享数据集构建的人工智能模型。市场上知名的开源大模型如Meta AI的LLaMA 3.1 405B,Mistral AI的Mistral Large 2,深度求索(deepseek)的DeepSeek-V2等,在自然语言处理、文本生成等领域展现了卓越的性能。这些模型都是开源的,并且在全球范围内被广泛使用和研究。

                                  数据来源:甲子光年智库

但开源大模型也存在一些挑战和不利因素。首先是隐私和安全问题。开源大模型的训练数据通常来自公开领域可能包含大量的个人信息和敏感数据,这可能引发隐私泄露和滥用的担忧。

另外,开源大模型的通用性可能导致在高阶任务或特定行业上的性能表现不尽如人意。以半导体行业为例,对于如缺陷图像识别、专业技术问答等特定需求较高的任务,开源大模型无法正确理解和处理,就需要进行额外的定制和优化工作。这就开启了开源大模型的定制化之路。

开源大模型从通用到定制化,需要经过模型选择、数据清洗、模型微调对齐、评估验证、优化迭代、部署集成等多个步骤,每一步都对大模型研发团队的技术实力、行业知识和专业精度提出了考验。

二、私有化大模型的蝶变关键:模型微调和指令微调

1、模型微调,是连接通用模型与定制化应用的纽带。

它通过在特定任务的数据集上进一步训练预训练模型,使得模型能够更好地适应和执行该任务。这种方法不仅减少了从头开始训练模型所需的时间和资源消耗,而且还能够针对特定的业务需求进行定制化调整,从而提升模型在特定任务/垂直行业上的性能。

敲重点~

众所周知,在OpenAI训练大语言模型GPT-4时,完成一次训练需要约三个月时间,使用大约25000块英伟达A100 GPU,1次训练用电2.4亿度电。每家公司都去从头训练自己的大模型,这件事情的性价比非常低。而使用开源大模型进行模型微调,可降低大模型定制化的门槛,加速AI应用的开发和部署。

模型微调时,需要繁复的数据集准备过程,涵盖了数据收集、清洗、标注、增强、平衡、划分等多个步骤。在这过程中,数据质量尤为关键。它不仅决定了模型训练的起点,更是影响着私有化大模型最终能否达到预期效果。

数据质量的优劣,会直接映射在模型的表现上。 大量重复的低质量数据可能导致训练过程不稳定,造成模型训练不收敛。训练数据的构建时间、包含噪音或有害信息情况以及数据重复率等因素,都对大语言模型性能存在较大影响。

因此,高质量数据及模型微调水平,是铸就大模型卓越表现之关键。

2、指令微调,是一种更为精细的调整方式。

指令微调又称为监督微调,是模型微调的主要类型之一。

它通过设计特定的指令或提示来引导模型生成或预测所需的输出。这种技术使得模型能够更加灵活地响应用户的指令,提高交互的自然性和准确性。在私有化大模型的应用中,指令微调尤其重要,因为它允许模型在保持预训练知识的同时,还能够理解和执行特定领域的任务,从而实现特定领域的专业化适配

举个例子

以半导体“晶圆缺陷识别”为例,在微调过程中,使用设计好的指令和对应的图像数据对模型进行微调。模型学习将指令与图像特征(如划痕、凹坑、凸起、裂纹、变形、错位等)关联起来,以提高对特定缺陷的识别能力。

三、从开源大模型到垂直领域应用的关键壁垒

部署私有化大模型的过程,每一项都是壁垒。从“模型选择”到“数据准备、处理”,再到“模型微调与对齐”,直至深入探索应用领域,智现未来不仅积累了丰富的经验,还在国内某头部客户的项目中成功实现了落地,带来了卓越的应用成效。 这凸显了智现未来在大模型定制转化的专业实力和创新能力。

智现未来积累的数据优势铸就了其大模型的数据壁垒,这源于公司对丰富且高质量的行业私有化数据积累、深入的行业知识理解以及高效的数据处理能力

如智现未来的大模型基础应用"专家问答"系统,则是其数据能力的具体体现。"专家问答"融合了“半导体行业公域数据,智现未来20余年私域数据,以及客户私有数据”等多方数据的微调和对齐,采用先进的多模LLM+RAG检索增强生成架构,增强行业知识应用,有效解决通用大模型幻觉、专业性不强、答非所问等问题。

此外智现未来大模型的卓越表现能力也体现在了晶圆缺陷识别、良率管理预测、智能报表生成、反馈优参等诸多具体“大模型+”应用上。

私有化大模型与工业场景应用需求深度融合,有利于实现更高水平的生产创新。智现未来作为AI智造的深度赋能者,愿与高端制造行业的众多客户紧密合作,解锁更多的生产创新可能,实现工业生产流程的优化和智能化。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值