“大模型技术和应用平台”是指围绕 基础大语言模型(LLM) 所构建的一整套从模型训练、推理服务、应用开发、平台化管理到场景落地的体系,贯穿了底层技术栈到上层行业应用。
以下是系统性的详细介绍(2025最新趋势):
一、核心大模型技术体系
模块 | 说明 | 主流工具/框架 |
---|---|---|
模型训练 | 自监督预训练、指令微调、强化学习(如RLHF) | Megatron, Deepspeed, HuggingFace, Colossal-AI |
模型压缩 | 量化、剪枝、蒸馏(LoRA、QLoRA) | BitsAndBytes, AutoGPTQ, PEFT |
模型推理服务 | 高效部署、并发控制、分布式推理 | vLLM, TGI, Triton Inference, ONNX |
对齐与安全 | 模型价值观、知识对齐、安全审查 | DPO, Constitutional AI, RLHF |
多模态融合 | 图像、语音、视频与文本联合建模 | OpenFlamingo, BLIP, Kosmos, DeepSeek-VL |
Agent编排 | 多工具/多模型协同调度智能体 | LangChain, LlamaIndex, AutoGen, CrewAI |
二、大模型应用平台架构(PaaS)
一个标准的大模型应用平台包含如下模块:
┌───────────────────────────────┐
│ 应用层(行业落地) │←→ 文案生成、代码辅助、智能客服、医学问答...
├───────────────────────────────┤
│ 应用编排层(LangChain) │←→ Tool调用、Agent、RAG系统、对话上下文管理
├───────────────────────────────┤
│ 模型服务层(API服务) │←→ OpenAI/Claude/DeepSeek/自建模型/vLLM
├───────────────────────────────┤
│ 模型管理层(权重/版本管理) │←→ 多模型切换、权限控制、指标监控
├───────────────────────────────┤
│ 推理加速与部署(vLLM等) │←→ Triton, TGI, ONNX, CUDA优化
├───────────────────────────────┤
│ 模型训练&微调层 │←→ LoRA, SFT, DPO, QLoRA
└───────────────────────────────┘
三、主流平台生态对比(2025年)
平台 | 说明 | 特点 | 适合人群 |
---|---|---|---|
OpenAI (ChatGPT) | 商业化最成熟 | API稳定、功能强大 | 企业快速集成 |
百度文心一言 | 国内通用大模型 | 中文处理强 | 政企用户 |
阿里通义千问/Qwen | 开源+商用模型 | 工具集丰富 | 开发者+平台商 |
智谱GLM | 高性能中文模型 | 多模态、金融政务适配 | 高度定制化 |
DeepSeek系列 | 支持本地部署/商业授权 | 代码生成、RAG能力强 | AI平台构建者 |
HuggingFace Transformers + PEFT + TGI | 开源最活跃生态 | 全流程支持微调+部署 | AI研发团队 |
LangChain / LlamaIndex | 应用编排平台 | 支持RAG、Agent、工具调用 | 构建复杂业务场景 |
四、大模型在典型行业应用平台
行业 | 应用场景 | 技术平台推荐 |
---|---|---|
医疗 | 病历总结、影像诊断、问诊对话 | 大模型 + 医疗RAG平台(LangChain) |
教育 | 个性化问答、智能批改、作文生成 | LLM + 教学Agent平台 |
法律 | 判例分析、法条检索 | LLM + 文档向量检索(LlamaIndex) |
政务 | 智能办事助手、公文起草 | 本地私有模型 + 安全对齐能力 |
金融 | 投研分析、报表生成、金融搜索 | 多模态大模型 + 专业RAG系统 |
电商 | 商品文案生成、客服自动回复 | LangChain + GPT/Claude 接口平台 |
交通 | 路况理解、导航推理、应急方案 | RAG + 多模态融合平台 |
五、实际部署方案简述
✅ 私有化部署
适用于政企/数据敏感场景:
-
模型:开源模型(如 Qwen1.5, DeepSeek-VL)
-
推理框架:vLLM/TGI/AutoGPTQ
-
前端平台:Gradio/FastAPI/Vue
-
应用编排:LangChain + RAG + 工具插件
✅ 云端接入
适用于快速验证和轻量集成:
- 直接使用 OpenAI API、百度文心API、阿里千问API
- 应用通过 LangChain/Flowise 连接并调度
- 利用 WeChat、钉钉、飞书、网页等接入终端
六、实用架构图10张
1.大模型技术和应用平台
2.大模型技术和应用平台
3.大模型技术和应用平台
4.大模型技术和应用平台
5.大模型技术和应用平台
6.大模型技术和应用平台
7.大模型技术和应用平台
8.
9.大模型技术和应用平台
10.大模型技术和应用平台
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。