一文读懂大模型技术和应用平台(带架构图10张)【建议收藏】

“大模型技术和应用平台”是指围绕 基础大语言模型(LLM) 所构建的一整套从模型训练、推理服务、应用开发、平台化管理到场景落地的体系,贯穿了底层技术栈上层行业应用

以下是系统性的详细介绍(2025最新趋势):

一、核心大模型技术体系

模块说明主流工具/框架
模型训练自监督预训练、指令微调、强化学习(如RLHF)Megatron, Deepspeed, HuggingFace, Colossal-AI
模型压缩量化、剪枝、蒸馏(LoRA、QLoRA)BitsAndBytes, AutoGPTQ, PEFT
模型推理服务高效部署、并发控制、分布式推理vLLM, TGI, Triton Inference, ONNX
对齐与安全模型价值观、知识对齐、安全审查DPO, Constitutional AI, RLHF
多模态融合图像、语音、视频与文本联合建模OpenFlamingo, BLIP, Kosmos, DeepSeek-VL
Agent编排多工具/多模型协同调度智能体LangChain, LlamaIndex, AutoGen, CrewAI

二、大模型应用平台架构(PaaS)

一个标准的大模型应用平台包含如下模块:

┌───────────────────────────────┐
│          应用层(行业落地)        │←→ 文案生成、代码辅助、智能客服、医学问答...
├───────────────────────────────┤
│         应用编排层(LangChain)   │←→ Tool调用、Agent、RAG系统、对话上下文管理
├───────────────────────────────┤
│       模型服务层(API服务)       │←→ OpenAI/Claude/DeepSeek/自建模型/vLLM
├───────────────────────────────┤
│      模型管理层(权重/版本管理)  │←→ 多模型切换、权限控制、指标监控
├───────────────────────────────┤
│     推理加速与部署(vLLM等)     │←→ Triton, TGI, ONNX, CUDA优化
├───────────────────────────────┤
│       模型训练&微调层            │←→ LoRA, SFT, DPO, QLoRA
└───────────────────────────────┘

三、主流平台生态对比(2025年)

平台说明特点适合人群
OpenAI (ChatGPT)商业化最成熟API稳定、功能强大企业快速集成
百度文心一言国内通用大模型中文处理强政企用户
阿里通义千问/Qwen开源+商用模型工具集丰富开发者+平台商
智谱GLM高性能中文模型多模态、金融政务适配高度定制化
DeepSeek系列支持本地部署/商业授权代码生成、RAG能力强AI平台构建者
HuggingFace Transformers + PEFT + TGI开源最活跃生态全流程支持微调+部署AI研发团队
LangChain / LlamaIndex应用编排平台支持RAG、Agent、工具调用构建复杂业务场景

四、大模型在典型行业应用平台

行业应用场景技术平台推荐
医疗病历总结、影像诊断、问诊对话大模型 + 医疗RAG平台(LangChain)
教育个性化问答、智能批改、作文生成LLM + 教学Agent平台
法律判例分析、法条检索LLM + 文档向量检索(LlamaIndex)
政务智能办事助手、公文起草本地私有模型 + 安全对齐能力
金融投研分析、报表生成、金融搜索多模态大模型 + 专业RAG系统
电商商品文案生成、客服自动回复LangChain + GPT/Claude 接口平台
交通路况理解、导航推理、应急方案RAG + 多模态融合平台

五、实际部署方案简述

✅ 私有化部署

适用于政企/数据敏感场景:

  • 模型:开源模型(如 Qwen1.5, DeepSeek-VL)

  • 推理框架:vLLM/TGI/AutoGPTQ

  • 前端平台:Gradio/FastAPI/Vue

  • 应用编排:LangChain + RAG + 工具插件

✅ 云端接入

适用于快速验证和轻量集成:

  • 直接使用 OpenAI API、百度文心API、阿里千问API
  • 应用通过 LangChain/Flowise 连接并调度
  • 利用 WeChat、钉钉、飞书、网页等接入终端

六、实用架构图10张

1.大模型技术和应用平台

img

2.大模型技术和应用平台

img

3.大模型技术和应用平台

img

4.大模型技术和应用平台

img

5.大模型技术和应用平台

img

6.大模型技术和应用平台

img

7.大模型技术和应用平台

img

8.

img

9.大模型技术和应用平台

img

10.大模型技术和应用平台

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

### RAG模型概述 RAG(Retrieval-Augmented Generation)是一种融合了检索增强机制的生成型语言模型,由Facebook AI研究院(FAIR)提出。这种架构通过结合传统的基于检索的方法现代的语言生成技术来提升自然语言处理任务的效果[^3]。 ### 工作原理详解 #### 数据获取阶段 在数据准备过程中,RAG利用外部知识库作为补充资源。当接收到输入查询时,系统首先会在预先构建的知识图谱或其他形式的大规模语料库中执行信息检索操作,找到最有可能帮助完成当前对话或任务的相关片段。 #### 动态上下文集成 不同于静态预训练模式下的纯生成方式,在线检索到的具体实例会被即时融入到解码器端口处,使得每次预测都能依据最新获得的真实世界证据来进行调整优化。这一特性赋予了RAG更强的情境适应能力,尤其是在面对开放领域问答、多轮次交互式聊天等复杂场景下表现尤为突出。 #### 双重评分机制 为了确保最终输出的质量,RAG采用了两步走策略:先是从候选集中挑选出若干高质量的回答选项;再经过一轮精细评估后决定最佳回复方案。具体来说就是分别计算每条建议得分——一方面考量它与原始请求之间的匹配度;另一方面也要顾及内部连贯性逻辑一致性等因素。 ```python def rag_model_inference(query, knowledge_base): retrieved_docs = retrieve_relevant_documents(query, knowledge_base) generated_responses = [] for doc in retrieved_docs: response = generate_response_based_on_document(doc) generated_responses.append(response) best_response = select_best_response(generated_responses) return best_response ``` ### 应用案例分析 实际应用方面,《大模型RAG实战:RAG原理、应用与系统构建》一书中提供了丰富的实践指导技术细节解析,涵盖了从理论基础到工程实现再到部署上线全流程的内容介绍。对于希望深入了解并掌握这项前沿技术的研究人员而言,这本书籍无疑是一个宝贵的学习资料来源[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值