在当今数字化飞速发展的时代,大模型、AI(人工智能)以及先进科技正以前所未有的速度改变着各个行业。电子招投标领域也不例外,这些新兴技术的融合为其带来了巨大的变革和广阔的发展前景。
一、电子招投标的现状与挑战
电子招投标是指通过互联网及相关技术,实现招标、投标、开标、评标和定标等全过程的电子化管理。近年来,电子招投标在提高效率、降低成本、增强透明度等方面取得了显著成效。
然而,目前电子招投标仍然面临一些挑战。首先,信息安全问题始终是一个关键关注点。招投标过程涉及大量敏感信息,如企业商业机密、投标报价等,如何确保这些信息在传输和存储过程中的安全性至关重要。其次,评标过程的公正性和准确性也有待提高。传统的评标方式主要依赖人工,容易受到主观因素的影响,可能导致评标结果不够客观公正。此外,电子招投标平台的功能和用户体验还有待进一步优化,以满足不断增长的市场需求。
二、大模型与 AI 在电子招投标中的应用
1、智能搜索与匹配
-
大模型的语言理解能力可以为电子招投标平台提供更强大的智能搜索功能。投标人可以通过自然语言输入需求,平台能够准确理解并快速检索出符合条件的招标项目。例如,投标人输入 “寻找在上海地区的建筑工程招标项目,要求有一级资质的施工企业”,平台可以迅速筛选出相关项目并展示给用户。
-
AI 算法可以根据投标人的历史投标记录、企业资质和业务范围等信息,为其智能推荐合适的招标项目,提高投标的针对性和成功率。
2、智能文档处理
-
大模型可以自动识别和提取招标文件中的关键信息,如项目要求、投标截止日期、评标标准等,并将其整理成结构化的数据,方便投标人快速了解项目概况。同时,对于投标文件,大模型也可以进行自动审查,检查文件的完整性和合规性,减少因文件不符合要求而导致的废标情况。
-
AI 技术可以实现文档的自动分类和归档,提高电子招投标平台的文件管理效率。例如,将不同类型的招标文件、投标文件、评标报告等自动分类存储,方便用户随时查询和调用。
3、 智能评标辅助
-
AI 可以通过对大量历史评标数据的学习,建立评标模型,为评标专家提供客观的参考意见。例如,根据项目类型、规模、技术要求等因素,预测合理的投标价格范围,帮助评标专家判断投标报价的合理性。
-
利用图像识别和文本分析技术,AI 可以对投标文件中的技术方案、施工图纸等进行自动分析,评估其可行性和创新性。同时,还可以对投标人的业绩、信誉等进行综合评估,提高评标过程的公正性和准确性。
三、先进科技在电子招投标中的融合
1、 区块链技术
-
区块链的去中心化、不可篡改和可追溯性等特点,可以为电子招投标提供更加安全可靠的信息存储和传输环境。通过将招投标过程中的关键信息如招标文件、投标文件、评标结果等上链存储,可以确保信息的真实性和完整性,防止信息被篡改或伪造。
-
区块链技术还可以实现招投标各方的身份认证和信任建立。投标人、招标人、评标专家等可以通过区块链进行身份认证,确保参与招投标的各方都是真实可信的。同时,区块链上的交易记录可以作为各方的信用记录,为后续的招投标活动提供参考。
2、 大数据分析
-
电子招投标平台积累了大量的招投标数据,通过大数据分析技术,可以挖掘出这些数据中的潜在价值。例如,分析不同地区、不同行业的招标项目特点和趋势,为投标人提供市场情报;分析评标专家的评标行为和偏好,为招标人选择合适的评标专家提供参考。
-
大数据分析还可以用于风险预警。通过对投标人的历史投标行为、财务状况等数据的分析,及时发现潜在的风险因素,如围标串标、恶意投标等,保障招投标过程的公平公正。
3、 物联网技术
-
在工程建设等领域的招投标中,物联网技术可以实现对施工现场的实时监控和管理。招标人可以通过物联网设备获取施工进度、质量等信息,确保投标人按照合同要求履行义务。同时,投标人也可以利用物联网技术展示自己的施工能力和管理水平,提高中标几率。
-
物联网技术还可以用于物资采购等领域的招投标。通过对物资的实时跟踪和管理,可以确保物资的质量和供应及时性,降低采购风险。
四、电子招投标未来发展方向
1、 更加智能化
-
随着大模型和 AI 技术的不断发展,电子招投标平台将变得更加智能化。从智能搜索、推荐到智能评标辅助,人工智能将贯穿招投标的各个环节,为用户提供更加便捷、高效的服务。
-
未来的电子招投标平台可能会具备自主学习和进化的能力,通过不断学习用户的行为和反馈,优化自身的功能和服务,更好地满足用户的需求。
2、 更加安全可靠
-
区块链、量子加密等先进技术的应用将进一步提高电子招投标的信息安全水平。同时,随着法律法规的不断完善和监管力度的加强,电子招投标的安全保障体系将更加健全。
-
电子招投标平台将加强对用户身份认证和权限管理的力度,确保只有合法用户才能参与招投标活动。同时,平台也将建立更加完善的应急预案,应对可能出现的安全事件。
3、 更加开放协同
-
电子招投标平台将与其他行业平台和系统进行深度融合,实现信息共享和业务协同。例如,与金融机构合作,为投标人提供融资服务;与物流企业合作,实现物资的高效配送等。
-
国际间的电子招投标合作也将不断加强。随着 “一带一路” 倡议的推进,各国之间的贸易往来和投资合作日益频繁,电子招投标作为一种高效、透明的采购方式,将在国际合作中发挥更大的作用。
4、更加注重用户体验
-
电子招投标平台将不断优化用户界面和操作流程,提高用户体验。例如,采用更加直观的可视化设计,让用户能够更清晰地了解招投标过程;提供移动应用程序,方便用户随时随地参与招投标活动。
-
平台将加强与用户的沟通和互动,及时了解用户的需求和反馈,不断改进自身的服务。同时,也将为用户提供更多的培训和支持,帮助用户更好地使用电子招投标平台。
五、解决用户痛点
对于招标人
1、 提高招标效率
-
智能搜索与匹配功能可以帮助招标人快速找到符合项目需求的潜在投标人。不再需要花费大量时间手动筛选投标者,大大缩短了招标周期。
-
智能文档处理能够自动提取关键信息,快速整理招标文件,减少人工操作的繁琐和可能出现的错误。
2、 确保招标公正性
-
智能评标辅助系统通过 AI 算法和大数据分析,为评标专家提供客观参考意见,减少人为因素对评标结果的影响,确保招标过程更加公正公平。
-
区块链技术的应用保证了招标信息的不可篡改和可追溯性,防止信息被恶意篡改,增加了招标的透明度和可信度。
3、 降低风险
-
大数据分析可以对投标人进行风险预警,及时发现潜在的围标串标、恶意投标等风险因素,保障招标人的利益。
-
物联网技术在工程建设招标中的应用,可实时监控施工现场,确保投标人按合同履行义务,降低项目风险。
对于投标人
1、 提升投标针对性
- AI 算法根据投标人的历史投标记录和企业资质等信息,智能推荐合适的招标项目,使投标人能够更有针对性地参与投标,提高中标几率。
2、 简化投标流程
- 智能文档处理自动审查投标文件的完整性和合规性,减少因文件不符合要求而导致的废标情况,节省投标人的时间和精力。
3、 获取市场情报
- 大数据分析挖掘电子招投标平台的数据价值,为投标人提供不同地区、不同行业的招标项目特点和趋势等市场情报,帮助投标人更好地制定投标策略。
对于评标专家
1、提高评标准确性
- AI 建立的评标模型可以根据项目类型、规模、技术要求等因素,预测合理的投标价格范围,为评标专家判断投标报价的合理性提供参考,使评标结果更加准确。
2、 减轻工作负担
- 图像识别和文本分析技术对投标文件中的技术方案、施工图纸等进行自动分析,以及对投标人的业绩、信誉等进行综合评估,减轻了评标专家的工作负担,提高了评标效率。
六、数智未来
大模型、AI 以及先进科技的融合为电子招投标带来了前所未有的机遇和挑战。在未来的发展中,电子招投标将朝着更加智能化、安全可靠、开放协同和注重用户体验的方向发展。我们有理由相信,随着技术的不断进步和应用的不断深入,电子招投标将在推动经济发展、提高资源配置效率、促进公平竞争等方面发挥更加重要的作用。作为电子招投标领域的从业者和参与者,我们应积极拥抱新技术,不断创新和改进,共同推动电子招投标行业的健康发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。