现在很多网站都有机器人聊天窗口,能随时解答我们的问题 🤗。但自己搭建一个智能客服系统,听起来是不是有点难?别担心,今天就来分享如何一键私有化部署 Dify,轻松搞定 AI 智能客服机器人 😎!
1、Dify 是什么?
Dify 是一个开源的 LLM(大语言模型)应用开发平台,其核心定位是通过低代码/无代码方式降低生成式 AI 应用的开发门槛,同时结合后端即服务(BaaS)和 LLMOps 理念,提供全生命周期的开发与运维支持。
核心特点:
1. 可视化低代码开发
- 提供直观的拖拽式界面,无需编程基础即可设计 AI 应用流程,降低开发门槛。
2. 多模型灵活接入
- 支持主流大语言模型(如 GPT-4、Claude、文心一言、deepseek 等),可快速切换或同时集成多个模型。
3. Prompt 工程优化
- 内置 Prompt 模板库与调试工具,支持实时调整提示词并预览效果,提升模型输出质量。
4. 数据驱动迭代
- 允许上传自有数据训练 AI 代理(Agent),通过持续反馈数据优化模型表现。
5. 端到端应用托管
- 提供云托管服务,一键发布为可访问的 Web 应用或 API,自动处理计算资源与扩展。
6. 协作与权限管理
- 支持团队角色分配(开发者、管理员等),实现多人协作开发与版本控制。
7. 交互式调试与监控
- 实时测试对话流,查看日志分析用户交互数据,快速定位问题并优化。
8. 插件生态集成
- 预置常用工具插件(如搜索引擎、数据库),支持自定义扩展以增强 AI 能力。
9. 多场景应用模板
- 提供客服机器人、智能写作助手等开箱即用模板,加速垂直领域落地。
2、一键安装 Dify
如果您是第一次使用 Rainbond Cloud[1] 平台,首先需要注册登录 Rainbond Cloud 账号。
步骤一:访问应用市场 Dify[2] 应用模版【安装试用】,自动跳转到 Rainbond Cloud 平台
步骤二:直接在平台安装,状态颜色全部变绿代表“运行中”,点【访问】按钮就能看到 Dify 的界面啦。
整个安装过程很简单,不需要懂代码也不需要懂运维,就能把 Dify 运行起来,下面开始制作 AI 智能客服
创建 AI 智能客服
步骤一:访问 Dify 创建管理员账号密码,邮箱可以随便输入,进入到主页头像选择设置—模型供应商,我用的是硅基流动[3],直接生成密钥填入进去。
步骤二:创建知识库,可以直接绑定外知识库,没有外部知识库直接创建一个,知识库有三种数据源的选择方式,选择第一种导入已有文本上传本地文件,直接“下一步”。
步骤三:设置分段模式,知识库支持两种分段模式:“通用模式”与“父子模式”。如果你是首次创建知识库,建议选择父子模式。与“通用模式”相比,父子模式采用双层分段结构来平衡检索的精确度和上下文信息,让精准匹配与全面的上下文信息二者兼得。
步骤四:配置完成后,点击“预览区块”即可查看分段后的效果。你可以直观的看到每个区块的字符数。如果重新修改了分段规则,需要重新点击按钮以查看新的内容分段。
步骤五:回到首页“创建空白应用”,选择 “Agent” 类型填写应用名称、描述等信息,然后点击“创建”按钮,完成应用的创建。
步骤六:配置提示词,如果不知道怎么设置也可以让 AI 生成,“上下文”这里添加知识库在右侧直接进行调试。
步骤七:调试完成之后点击 “发布”,可以直接在线访问也可以选择 “嵌入” 集成到网站,有三种展现形式选择一种将复制的代码粘贴进去就能嵌入成功啦。
总结
通过 Dify 平台,我们可以轻松实现 AI 智能客服机器人的私有化部署 😎。只需简单的几步操作,就能搭建出一个功能强大的智能客服系统,为用户提供更加优质的服务 🤗。还等什么,赶紧动手试试吧!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。