无论是 DeepSeek、Kimi、豆包 还是 ChatGPT,提示词(Prompt) 的质量直接影响 AI 的回答效果。本指南将系统讲解 Prompt 设计原则、优化技巧、各平台差异,并提供 实战案例,帮助你高效使用主流 AI 工具。
一、什么是提示词(Prompt)?
Prompt 是用户输入给 AI 的指令或问题,用于引导 AI 生成符合预期的内容。
- 好的 Prompt:清晰、具体、可执行(如:“用通俗语言解释区块链,适合高中生理解”)。
- 差的 Prompt:模糊、笼统(如:“给我讲讲区块链”)。
Prompt 的组成要素
- 任务描述(What):告诉 AI 要做什么(写作、编程、分析等)。
- 约束条件(How):限制输出范围(字数、风格、格式等)。
- 示例参考(Few-shot):提供案例让 AI 模仿。
- 上下文补充(Context):额外信息帮助 AI 理解需求。
二、如何写出高质量的 Prompt?
1、 结构化 Prompt 公式
✅ 角色 + 任务 + 要求 + 示例
例(适用于 DeepSeek/ChatGPT):
“你是一位资深科技作者(角色),请写一篇关于 AI 大模型的科普文章(任务),语言通俗易懂,适合普通读者,800字左右(要求)。可参考《人类简史》的叙事风格(示例)。”
2、 优化 Prompt 的技巧
具体化:避免模糊词汇,用数字、示例明确需求。
- ❌ “写一篇产品测评” → ✅ “写一篇 iPhone 15 Pro 的测评,对比 iPhone 14 Pro,重点分析摄像头升级”
分步引导(Chain-of-Thought):复杂任务拆解成步骤。
- ❌ “帮我分析这份财报” → ✅ “1. 计算近三年营收增长率;2. 对比行业均值;3. 给出投资建议。”
调整语气:不同 AI 对语气敏感度不同。
ChatGPT:“请用幽默的方式解释”
Kimi:“请用学术严谨的语言回答”
豆包:“请用通俗易懂的大白话”
3、 不同 AI 平台的 Prompt 适配
AI 工具 | 特点 | Prompt 优化建议 |
---|---|---|
DeepSeek | 逻辑严谨,长文本强 | 适合技术分析、论文写作,可要求分步推理 |
Kimi | 知识广,适合中文 | 可多用 Few-shot 示例,要求“用中文回答” |
豆包 | 轻量级,适合日常 | 简洁指令即可,如“用一句话总结” |
ChatGPT | 创意强,多语言 | 可尝试开放式问题,如“给我5个营销创意” |
三、常见 Prompt 错误 & 如何避免
❌ 错误 1:过于笼统
“帮我写个方案” → 改进:“写一份短视频运营方案,目标Z世代,包含内容规划、发布时间、数据分析”
❌ 错误 2:忽略 AI 特点
在 豆包 问复杂代码 → 改进:改用 DeepSeek/ChatGPT
在 Kimi 问冷门知识 → 改进:补充背景说明
❌ 错误 3:缺少约束条件
“生成一份报告” → 改进:“生成一份2023年新能源汽车市场报告,数据+趋势分析,2000字”
四、高级 Prompt 技巧
1. 思维链(Chain-of-Thought, CoT)
让 AI 分步推理,提高复杂任务准确率:
“解方程 2x + 5 = 15,请一步步解释。”
2. 反向 Prompt(Negative Prompt)
在 AI 绘画/生成中,排除不想要的元素:
“不要出现现代建筑,不要过于写实”
3. 温度(Temperature)控制
低温度(0.2) → 输出稳定、保守(适合事实类回答)。
高温度(0.8) → 输出创意、多样化(适合故事、诗歌)。
4. 多轮对话优化
如果 AI 第一次回答不理想,可以:
- 补充细节(“再详细一点”)
- 调整要求(“换一种更幽默的表达”)
- 提供反馈(“这个方向不对,请重写”)
五、实战案例(不同 AI 对比)
案例 1:写作类 Prompt
任务:让 AI 写一篇产品测评
✅ DeepSeek/ChatGPT:
“你是一位数码测评专家,请评测 iPhone 15 Pro 的摄像头,对比 iPhone 14 Pro,列出3个升级点和2个不足,语言专业但易懂。”
✅ Kimi/豆包:
“用通俗语言写一篇 iPhone 15 Pro 的拍照体验测评,适合普通消费者阅读。”
案例 2:编程类 Prompt
任务:让 AI 写一个 Python 爬虫
✅ DeepSeek/ChatGPT:
“用 Python 写一个爬取新闻标题的脚本,使用 requests 和 BeautifulSoup,避免被封 IP,代码带注释。”
✅ Kimi:
“写一个简单的 Python 爬虫,抓取百度首页的标题,代码尽量简洁。”
案例 3:创意类 Prompt
任务:让 AI 生成营销 slogan
✅ ChatGPT:
“为新能源汽车品牌设计5个广告 slogan,突出‘环保’和‘科技感’,语言简洁有力。”
✅ 豆包:
“想一句朗朗上口的新能源汽车广告语,10个字以内。”
六、未来趋势
- 自动化 Prompt 优化:AI 自动调整 Prompt 以提高输出质量。
- 多模态 Prompt:文本+图像+语音混合指令(如“根据这张照片写诗”)。
- 个性化 AI 交互:AI 记忆用户偏好,自动优化回答风格。
总结
✅ Prompt 设计核心:清晰、具体、结构化。
✅ 优化方法:分步引导、示例参考、调整参数。
✅ 平台适配:
DeepSeek/ChatGPT → 复杂任务、技术分析
Kimi → 中文知识问答、Few-shot 学习
豆包 → 日常对话、简洁回答
你的 Prompt 就是 AI 的“思维导航”,设计得越好,结果越精准!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。