众所周知,大语言模型(LLM)正在飞速发展,各行业都有了自己的大模型。其中,大模型微调技术在此过程中起到了非常关键的作用,它提升了模型的生成效率和适应性,使其能够在多样化的应用场景中发挥更大的价值。
那么,今天这篇文章就带大家深入了解大模型微调,主要包括什么是大模型微调、什么时候需要大模型微调、大模型微调方法总结、大模型微调最佳实践等。
前排提示,文末有AI大模型CSDN独家籽料包哦!
LLM项目生命周期
在介绍大模型微调方法之前,首先带大家了解一下大语言模型的项目生命周期,它大致可以分为以下几个步骤,如下图所示
1、项目目标:首先,明确项目目标。决定LLM是作为一个通用工具还是专注于特定任务(如命名实体识别)。明确的目标有助于节省时间和资源。
2、模型选择:在从头开始训练模型和修改现有模型之间做出选择。在许多情况下,适应性调整现有模型是高效的,但在某些情况下,可能需要通过新模型进行微调。
3、模型性能与调优:准备模型后,评估其性能。如果性能不佳,尝试进行提示工程(prompt engineering)或进一步微调。确保模型输出与人类偏好保持一致。
4、评估与迭代:定期使用指标和基准进行评估。在提示工程、微调和评估之间进行迭代,直到达到期望的结果。
5、模型部署:当模型表现符合预期时,进行部署。在这个阶段,优化计算效率和用户体验。
LLM微调
LLM微调是一个将预训练模型在较小、特定数据集上进一步训练的过程,目的是精炼模型的能力,提高其在特定任务或领域上的性能。微调的目的是将通用模型转变为专用模型,弥合通用预训练模型与特定应用需求之间的差距,确保语言模型更贴近人类的期望。
以OpenAI的GPT-3为例,这是一个为广泛的自然语言处理(NLP)任务设计的先进LLM。假设一家医疗组织希望使用GPT-3来帮助医生从文本笔记生成患者报告。虽然GPT-3能理解和创建一般文本,但它可能没有针对复杂的医学术语和特定医疗术语进行优化。
为了提高GPT-3在这一专业角色中的性能,该组织会在包含医疗报告和患者笔记的数据集上对GPT-3进行微调。它可能会使用像SuperAnnotate的LLM定制编辑器这样的工具来构建具有所需界面的模型。通过这个过程,模型变得更加熟悉医学术语、临床语言的微妙之处和典型的报告结构。微调后,GPT-3能够协助医生生成准确且连贯的患者报告,展示了它对特定任务的适应性。
尽管微调听起来对每个LLM都很有价值,但请记住,这并非没有代价。接下来,将会详细讨论这些成本。
什么时候需要LLM微调
说起LLM,总会涉及到上下文学习、零样本、单样本和少样本推理等话题。我们先快速了解一下它们主要的功能。
上下文学习(In-context learning) 是一种通过在提示中加入特定任务示例来改进提示的方法,为LLM提供了完成任务的蓝图。
零样本(Zero-shot)、单样本(One-shot)和少样本(Few-shot)推理 零样本推理是在提示中直接使用输入数据,不添加额外示例。如果零样本推理未能达到预期结果,可以使用单样本或少样本推理。这些