点击打开题目链接
##题目大意:
给出两个整数M和L及一个字符串s,找到s的子串使得满足:
1.子串长度为L*M;
2.子串可以分成M个小子串,每个长度L,且M个子串互不相同;
求满足条件的s的子串的数量。
##思路:
基本思路是先用BKDRhash函数处理字符串。然后字符串从后往前遍历求解hash值,利用map判重的特点,存储子串中每个小子串的hash值,如果等于M则ans++。然后思考怎样遍历所有的子串,如果一个个枚举子串起始位置肯定超时。所以可以只枚举最开始的L个子串,然后往后延伸,每增加一个小子串之前,去掉最开始的那个小子串,类似于滑动窗口处理。(ull的数据会溢出会自动取余。所以不用担心溢出问题。)
##代码:
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long ull;
const int maxn = 1e5 + 5;
const int seed = 31;
ull _base[maxn], _hash[maxn];
map<ull, ull> mp;
int M, L;
string s;
ull str_hash(int l, int r) {
return _hash[l] - _hash[r+1] * _base[r-l+1];
}
int main() {
ios::sync_with_stdio(false), cin.tie(0);
_base[0] = 1;
for(int i = 1; i < maxn; i++) _base[i] = _base[i-1] * seed;
while(cin >> M >> L) {
cin >> s;
int len = s.length();
_hash[len] = 0;
for(int i = len-1; i >= 0; i--) _hash[i] = _hash[i+1] * seed + (s[i] - 'a' +1);
int ans = 0;
for(int i = 0; i < L && i + M*L < len; i++) {
mp.clear();
for(int j = i; j < i + M*L; j += L) {
mp[str_hash(j, j+L-1)]++;
}
if(mp.size() == M) ans++;
for(int j = i + M*L; j <= len - L; j += L) {
mp[str_hash(j-M*L, j-M*L+L-1)]--;
if(mp[str_hash(j-M*L, j-M*L+L-1)] == 0) mp.erase(str_hash(j-M*L, j-M*L+L-1));
mp[str_hash(j, j+L-1)]++;
if(mp.size() == M) ans++;
}
}
cout << ans << endl;
}
return 0;
}