逆元模板

逆元

一:费马小定理求逆元( nlog(n) )

ll n, p;
ll fastpow(ll a, ll b, ll MOD){
    a %= MOD;
    ll ans = 1;
    while(b){
        if(b & 1) ans = (ans * a) % MOD;
        a = (a * a) % MOD;
        b >>= 1;
    }
    return ans;
}
ll inv(ll x, ll p){
    return fastpow(x, p-2, p);
}

二:扩展欧几里得定理求逆元( nlong(n) )

//时间复杂度上略优于费马小定理求逆元

ll x, y, n, p;
void exgcd(ll a, ll b, ll &x, ll &y){
    if(b == 0) {
        x = 1; y = 0; return;
    }
    exgcd(b, a%b, x, y);
    ll temp = x;
    x = y;
    y = temp - a / b * y;
}
ll inv(ll r, ll p){
    exgcd(r, p, x, y);
    r = (x % p + p) % p;
    return r;
}

三:线性逆元算法

用于求一连串数字对于一 个 % p 的逆元

给定n,p求1~n中所有整数在模p意义下的乘法逆元。

公式:

a[i] = -(p/i) * a[p%i];
a[i] = (a[i] %p + p) % p;

代码:

#include<bits/stdc++.h>
using namespace std;
​
typedef long long ll;
const int maxn = 3e6+10;
const int INF = 0x3f3f3f3f;
​
ll x, y, n, p;
ll a[maxn];
void exgcd(ll a, ll b, ll &x, ll &y){
    if(b == 0) {
        x = 1; y = 0; return;
    }
    exgcd(b, a%b, x, y);
    ll temp = x;
    x = y;
    y = temp - a / b * y;
}
ll inv(ll r, ll p){
    exgcd(r, p, x, y);
    r = (x % p + p) % p;
    return r;
}
int main(){
    scanf("%lld%lld", &n, &p);
    a[1] = inv(1, p);
    for(int i=2; i<=n; i++){
        a[i] = -(p/i) * a[p%i];
        a[i] = (a[i] %p + p) % p;
    }
    for(int i=1; i<=n; i++){
        printf("%lld\n", a[i]);
    }
    return 0;
}
​

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值