逆元(模板)

乘法逆元的定义

①当m为质数时,可以用快速幂求逆元:
a / b ≡ a * x (mod m)
两边同乘b可得 a ≡ a * b * x (mod m)
即 1 ≡ b * x (mod m)
同 b * x ≡ 1 (mod m)
由费马小定理可知,当m为质数时
b ^ (m - 1) ≡ 1 (mod m)
拆一个b出来可得 b * b ^ (m - 2) ≡ 1 (mod m)
故当n为质数时,b的乘法逆元 x = b ^ (m - 2)

②当m不是质数时,可以用扩展欧几里得算法求逆元:
a有逆元的充要条件是b与m互质,所以gcd(b, m) = 1
假设b的逆元为x,那么有b * x ≡ 1 (mod m)
等价:bx + my = 1
exgcd(b, m, x, y)

//快速幂求逆元 
#include <iostream>
#define ll long long
using namespace std;
int gcd(int a,int b){
	return b==0?a:gcd(b,a%b);
}
ll qmi(int a,int b,int m)
{
    ll ans = 1;
    while(b){
        if(b&1) ans=ans*a%m;
        a=1ll*a*a%m;
        b>>=1;
    }
    return ans;
}
int main()
{
    int n;cin>>n;
    while(n--){
        int b,m;
        cin>>b>>m;
        if(gcd(b,m)!=1) puts("impossible");//存在逆元的前提是b与m互质 
        else cout<<qmi(b,m-2,m)<<endl;
    }
    return 0;
}

//扩欧求逆元
#include <iostream>
#define ll long long
using namespace std;
int n;
int exgcd(int a,int b,int &x,int &y)
{
    if(!b)
    {
        x=1;y=0;
        return a;
    }
    int d=exgcd(b,a%b,y,x);
    y-=(a/b)*x;
    return d;
}
int main()
{
    cin>>n;
    while(n--)
    {
        int b,m,x,y;
        cin>>b>>m;
        int d=exgcd(b,m,x,y);
        if(d==1) cout<<((ll)x+m)%m<<endl;//保证x是正数
        else puts("impossible");
    }
    return 0;
}
 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值