deepseek如何生成图片?玩转DS必知的使用技巧推荐!

用过deepseek的人都知道,deepseek可生成的内容主要集中在文本,如文章、故事、诗歌、代码片段、列表等,不像其他多模态大模型,可以生成图片、视频、PPT、思维导图、流程图、简历等,无法满足多场景使用的需求。

deepseek拥有深度思考的能力,能够很好地理解我们的意图,仅需输入少量的提示词,就能轻松得到满意的内容。虽然DeepSeek无法直接生成图片,但可以先让DeepSeek生成AI绘画提示词,再借助AI绘图或AI文生图工具,将deepseek生成的提示词一键生成图片,通过联动的方式让deepseek生成图片!

deepseek怎么生成图片?

① deepseek生成AI绘画提示词

目前主要有2种使用DeepSeek的方式,一个是DeepSeek官方平台,一个是使用接入或集成了DeepSeek的外部应用,比如boardmix、元宝、TX文档等。

第一种方式无需多言,有时会遇到“服务器繁忙”的问题,导致无法使用,此时可以切换到接入了DeepSeek的第三方应用,这里以boardmix为例展开介绍,其他软件的用法基本一致。

boardmix是以在线白板为载体的AI协作平台,基于Web技术构建,使用时只需在浏览器打开boardmix首页,如下图,点击“新建白板”,创建boardmix文件。

进入boardmix文件,点击左上角的“AI助手”,打开boardmix AI面板,点击输入框左下角的“深度思考”按钮,启用DeepSeek,在输入框内输入让DeepSeek生成AI绘画提示词的需求,它就会快速生成对应的内容。

举例:你是一个资深的AI绘画专家,擅长撰写各类AI提示词,现在我想让AI生成一张主题为“温馨的家”的图片,请你帮我撰写一个可以明确传达这一主题的AI绘画提示词,方便稍后我让AI绘画工具生成对应的图片

DeepSeek生成的AI绘画提示词如下,接下来就可以将AI提示词放到AI绘画软件中,基于文生图能力得到想要的图片。

“温馨的家”AI绘画提示词:精致写实风格,柔光渲染的冬日傍晚客厅全景,暖木色开放式厨房飘散热可可香气,布艺沙发堆满针织抱枕,壁炉火光在胡桃木书架投下摇曳光影,窗边钢琴旁女孩正在翻看老相册,玻璃窗凝结着冰花却透出室内暖黄灯光,茶几摆放着冒热气的姜茶和棋盘游戏,每个细节都充盈着家庭温度与时光沉淀的安宁感。

② AI绘画提示词生成图片

boardmix本身带有AI绘画功能,因此无需切换到其他应用,就能在boardmix内将DeepSeek生成的提示词,一键生成图片。点击boardmix左上角的“生成图片”,进入AI绘画模式。

将前面DeepSeek生成的提示词粘贴到右上角的“创意描述”中,下方选择AI绘画模型、图片尺寸和图片数量,点击最下方的“立即生成”按钮,boardmix AI就会基于我们配置的参数,生成与之对应的图片。

经过前面两步操作,就实现了DeepSeek生成图片的目的,对于想用DeepSeek生成图片的朋友来说,不妨现在就去尝试一下。

以上就是本次想和各位分享的所有内容,希望能帮到有需要的朋友。如果你有其他疑问,或是想进一步了解的内容,欢迎在下方的评论区留言,我们一起交流探讨。

### 如何使用 DeepSeek 生成报表 要利用 DeepSeek 和 Infograph 实现自动化信息表生成,可以参考以下方法和教程: #### 环境准备 为了成功运行基于 DeepSeek 的报表生成功能,需先完成环境配置。这一步骤涉及安装要的库以及设置 API 密钥。 以下是所需的主要依赖项及其安装命令: ```bash pip install deepseek openai infographics pandas matplotlib seaborn ``` 确保已获取 DeepSeek 提供的有效 API 访问密钥并将其存储到安全位置以便后续调用[^2]。 #### 基础代码框架 下面提供了一个基础的 Python 脚本模板用于通过 DeepSeek 接口请求数据,并结合图表工具生成可视化报告文件。 ```python import os from deepseek import DeepSeekClient def generate_report(prompt, output_file="report.pdf"): ds_client = DeepSeekClient(api_key=os.getenv('DEEPSEEK_API_KEY')) response = ds_client.generate(text=prompt) data_points = parse_response(response['content']) # 自定义解析函数 create_visualizations(data_points, save_path=output_file) def parse_response(raw_text): """ 将模型返回的结果转换成结构化形式 """ pass def create_visualizations(data_dict, save_path=None): import matplotlib.pyplot as plt import seaborn as sns fig, ax = plt.subplots(figsize=(8,6)) sns.barplot(x=list(data_dict.keys()), y=list(data_dict.values())) if save_path is not None: plt.savefig(save_path) else: plt.show() if __name__ == "__main__": query = "分析过去一年公司销售业绩变化趋势" generate_report(query, 'sales_trend_analysis.pdf') ``` 上述脚本展示了如何构建一个完整的流程来询问有关业务表现的问题并将答案绘制成图形表示出来[^1]。 #### 注意事项与技巧提示 - **API 错误处理**:始终考虑网络连接失败或者服务器过载等情况下的异常情况管理。 - **输入优化**:尝试调整提问方式以获得更精确的回答内容。 - **输出定制化**:依据实际需求修改图像样式参数比如颜色主题、字体大小等细节部分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值