ubuntu16.04安装jupyter问题(后续)

ubuntu16.04安装jupyter问题(后续)

1、error1

ERROR: Could not install packages due to an EnvironmentError: [Errno 13] Permission denied: '/home/lvyan/.local/lib/python3.5'
Check the permissions.

安装jupyter出错,解决办法:

sudo python3 -m pip install --upgrade pip
sudo python3 -m pip install jupyter

2、error2

ERROR: jsonschema 3.0.1 has requirement six>=1.11.0, but you'll have six 1.10.0 which is incompatible.

卸载了它们,解决办法:

sudo pip uninstall jupyter
sudo pip uninstall jupyter notebook

运行pip3 install --upgrade --force-reinstall --no-cache-dir jupyter

3、error3

ERROR: Cannot uninstall 'ptyprocess'. It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.

在计算机路径下找到ptyprocess.egg-info,它是有版本的,所以去计算机搜索ptyprocess,找到以egg-info结尾的文件,删除文件。

再运行:

pip3 install --upgrade --force-reinstall --no-cache-dir jupyter

4、error4

ERROR: Cannot uninstall 'pexpect'. It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.

error3,删除pexpect.egg-info文件。

凡是类似上述错误,均删除egg-info文件。

再运行:

pip3 install --upgrade --force-reinstall --no-cache-dir jupyter

5、error5

输入jupyter notebook

输出[C 19:04:35.386 NotebookApp] Running as root is not recommended. Use --allow-root to bypass.

上述命令表示没有权限。

解决办法:

jupyter notebook --generate-config --allow-root

得到jupyter_notebook_config.py的路径

打开配置文件gedit /它的路径/jupyter_notebook_config.py

找到#c.NotebookApp.allow_root = False

去掉#,改为Truec.NotebookApp.allow_root =True

保存,直接运行jupyter notebook

### Tesla P100 安装指南 对于希望了解如何安装配备 Tesla P100 的系统的用户来说,可以从 Ubuntu 16.04 开始配置环境,在此环境中加入 CUDA 和 cuDNN 支持,并最终完成 TensorFlow 及 Jupyter Notebook 的部署[^1]。 #### 准备工作 确保已经获取到所有必要的硬件组件并确认这些设备能够正常运作。首次组装计算机时建议观看一些在线视频教程来熟悉整个过程[^2]。 #### 软件环境搭建 - **操作系统**: 推荐使用稳定版本的操作系统如Ubuntu 16.04 LTS。 - **驱动程序安装**: 更新至最新的 NVIDIA 显卡驱动以支持 Tesla P100 GPU 功能特性。 - **CUDA Toolkit**: 下载对应版本的 CUDA 工具包,这一步骤至关重要因为它提供了GPU加速所需的核心库文件和支持工具集。 - **cuDNN 库集成**: 获取适用于所选框架(例如TensorFlow)的特定版本的 cuDNN 库,并按照官方说明将其路径添加到环境变量中以便于后续应用调用。 ```bash export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64 ``` - **Anaconda 发行版 Python**: 使用 Anaconda 来管理不同项目所需的Python依赖关系是非常方便的选择;通过它创建新的虚拟环境来进行实验性开发也是不错的方法之一。 - **Jupyter Notebook 安装**: 当解决了网络连接速度慢的问题之后就可以顺利地下载并安装 Jupyter Notebook ,从而允许在一个交互式的Web界面内编写和运行代码片段了。 #### 测试与验证 最后要做的就是测试新设置好的平台能否正常使用。可以通过简单的例子比如训练一个小规模的数据模型来看看一切是否都按预期那样运转良好。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小吕同学吖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值