nyoj 1030 Yougth's Game[Ⅲ](区间dp)


//定义状态dp[i][j]为从i到j上先取数者的得分,那么后取数者的得分就是sum(i,j)-dp[i][j]
//状态转移方程: 
//t1 = a[i]+(sum[j]-sum[i]-d[i+1][j]);取a[i],在剩余的i+1--j中,b先取,b取得的为d[i+1][j],
//t2 = a[j]+(sum[j-1]-sum[i-1]-d[i][j-1]);sum[j]-sum[i]是i+1--j的和
//d[i][j] = max(t1, t2);
#include <iostream>
#include <cstring>
using namespace std;

int n;
int a[1010];
int d[1010][1010];
int sum[1010];

int dp()
{
    memset(d, 0, sizeof(d));

    for(int l = 1; l <= n; l++)
        for(int i = 1, j = l; j <= n; j++, i++)
        {
            int t1, t2;
            t1 = a[i] + (sum[j] - sum[i] - d[i+1][j]);
            t2 = a[j] + (sum[j-1] - sum[i-1] - d[i][j-1]);
            d[i][j] = max(t1, t2);

        }
    return d[1][n] - (sum[n]-d[1][n]);
}
int main()
{
    while(cin >> n)
    {
        sum[0] = 0;
        for(int i = 1; i <= n; i++)
        {
            cin >> a[i];
            sum[i] = sum[i-1] + a[i];
        }
        cout << dp() << '\n';
    }
}

阅读更多
文章标签: 区间dp
个人分类: dp
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭