nyoj 1030 Yougth's Game[Ⅲ] 区间动规

描述

有一个长度为n的整数序列,A和B轮流取数,A先取,每次可以从左端或者右端取一个数,所有数都被取完时游戏结束,然后统计每个人取走的所有数字之和作为得分,两人的策略都是使自己的得分尽可能高,并且都足够聪明,求A的得分减去B的得分的结果。

输入
输入包括多组数据,每组数据第一行为正整数n(1<=n<=1000),第二行为给定的整数序列Ai(-1000<=Ai<=1000)。
输出
对于每组数据,输出A和B都采取最优策略的情况下,A的得分减去B的得分的结果。
样例输入
3
1 2 3
4
2 4 5 3
样例输出
2
0
来源
Yougth原创
上传者
TC_杨闯亮




ps:区间动规。。本题需要有两个状态表。。这一局的dp值等于上一局的区间的总值-上一局对手的dp值+新增端点的值、而上一局的区间的总值+新增端点的值=这一局区间总值、而区间分割只有两种情况

例如:1 2 3 4可以分为两种情况:

          1      234

          123     4

所以它每一局的dp值的改变方式有dp[i][j]=maxx(w[i][j]-dp[i-1][j],w[i][j]-dp[i-1][j+1]);



代码如下:

#include<stdio.h>
#include<string.h>
using namespace std;
int dp[1020][1020],w[1020][1020];
int maxx(int a,int b)
{
    return a>b?a:b;
}
int main()
{
    int n;
    int a[1020];
    while(~scanf("%d",&n))
    {
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            dp[1][i]=a[i];
            w[1][i]=a[i];
        }
        for(int i=2;i<=n;i++)
        {
            for(int j=1;j<=n-i+1;j++)
            {
                w[i][j]=w[i-1][j]+w[1][i+j-1];//记录每一个区间的和。
                //printf("!!!%d\n",w[i][j]);
            }
        }
        for(int i=2;i<=n;i++)
        {
            for(int j=1;j<=n-i+1;j++)
            {
               dp[i][j]=maxx(w[i][j]-dp[i-1][j],w[i][j]-dp[i-1][j+1]);//增头或增尾的两种情况
               //printf("###%d\n",dp[i][j]);
            }

        }
        int z=2*dp[n][1]-w[n][1];
        printf("%d\n",z);
    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值