一、概述:本地模型监控的核心需求与挑战
- 关键监控指标:推理延迟、内存使用、吞吐量、资源争抢、错误率。
- 核心挑战:
- 数据隐私与本地化部署要求。
- 异构硬件(如CPU/GPU)的适配性与资源利用率优化。
- 实时性与高并发场景下的稳定性保障。
二、集成 New Relic AI 的监控方案
- New Relic 的 AI 可观测性能力
- 支持 DeepSeek 等开源大模型的集成,提供全栈可视化监控,覆盖延迟、吞吐量、服务间请求流追踪。
- 内置 合规性监控,确保数据隐私(如 GDPR、SOC 2)。
- 实施步骤
- 接入模型服务:通过 API 或 SDK 将本地模型与 New Relic 平台对接。
- 配置监控仪表盘:自定义指标(如每秒请求数、平均响应时间)、告警阈值设置。
- 根因分析:结合依赖关系图谱定位性能瓶颈(如 GPU 资源争抢导致的延迟突增)。
三、自建监控方案的技术路径
- 开源工具链选型