以下是一个将大模型部署整合到CI/CD流水线的详细方案,包含目录结构、核心流程说明及实际代码案例。内容涵盖自动化测试、容器化部署、版本管理以及持续交付的完整链路。
目录结构
.
├── .github/workflows/ # GitHub Actions流水线定义
│ ├── ci-cd-pipeline.yml # 主流水线文件
├── src/ # 源代码目录
│ ├── model_loader.py # 模型加载与推理代码
│ ├── tests/ # 测试用例
│ │ ├── test_inference.py # 模型推理测试
├── docker/ # Docker相关配置
│ ├── Dockerfile # 模型服务容器化定义
│ ├── requirements.txt # Python依赖
├── dvc.yaml # 数据/模型版本管理配置
├── scripts/ # 辅助脚本
│ ├── deploy_to_k8s.sh # Kubernetes部署脚本
核心流程设计
1. 版本管理(DVC + Hugging Face Hub)
# 示例:dvc.yaml 管理模型版本
stages:
download_model:
cmd: python src/download_model.py --repo_id=meta-llama/Llama-2-7b --revision=v2.1
deps:
- src/download_model.py
outs:
- models/llama-2-7b
meta:
tags:
- llama
2. 自动化测试(Pytest + GitHub Actions)
# src/tests/test_inference.py
import pytest
from src.model_loader import generate_text
def test_model_inference():
# 测试基础推理功能
prompt = "The capital of France is"
result = generate_text(prompt, max_length=20)
assert "Paris" in result, "模型基础推理失败"
# 测试空输入处理
with pytest.raises(ValueError):
generate_text("")
3. 容器化部署(Docker + Kubernetes)
# docker/Dockerfile
FROM nvidia/cuda:12.1.1-base
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY src/ ./src/
COPY models/llama-2-7b /app/models
EXPOSE 8000
CMD ["uvicorn", "src.api:app", "--host", "0.0.0.0", "--port", "8000"]
4. CI/CD流水线(GitHub Actions)
# .github/workflows/ci-cd-pipeline.yml
name: LLM CI/CD Pipeline
on:
push:
branches: [main]
pull_request:
branches: [main]
jobs:
test:
runs-on: ubuntu-latest
container: nvidia/cuda:12.1.1-base
steps:
- uses: actions/checkout@v4
- name: Install DVC
run: pip install dvc
- name: Pull Model
run: dvc pull -r my-remote # 从DVC仓库拉取模型
- name: Run Tests
run: |
pip install -r docker/requirements.txt
pytest src/tests/
deploy:
needs: test
if: github.ref == 'refs/heads/main'
runs-on: self-hosted-gpu # 需要自托管GPU Runner
steps:
- uses: actions/checkout@v4
- name: Build Docker Image
run: docker build -t llm-service:${GITHUB_SHA} -f docker/Dockerfile .
- name: Push to Registry
run: |
echo "${{ secrets.DOCKER_PASSWORD }}" | docker login -u ${{ secrets.DOCKER_USERNAME }} --password-stdin
docker push my-registry/llm-service:${GITHUB_SHA}
- name: Deploy to Kubernetes
run: |
kubectl set image deployment/llm-deployment llm-container=my-registry/llm-service:${GITHUB_SHA}
关键技术点说明
1. 模型版本控制
- DVC管理大文件:避免将大模型存入Git仓库,使用
dvc push/pull
同步到S3/GCS - Hugging Face集成:通过
huggingface_hub
库动态加载模型
# src/download_model.py
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="meta-llama/Llama-2-7b",
revision="v2.1",
local_dir="models/llama-2-7b",
cache_dir=".cache"
)
2. GPU资源优化
- 分层Docker构建:分离模型下载与代码部署层
- Kubernetes GPU调度:部署时声明资源需求
# Kubernetes部署模板
apiVersion: apps/v1
kind: Deployment
spec:
template:
spec:
containers:
- name: llm-container
resources:
limits:
nvidia.com/gpu: 1
3. 安全加固
- 模型访问鉴权:从Vault动态获取Hugging Face Token
import os
from huggingface_hub import login
login(token=os.getenv("HF_TOKEN"))
扩展建议
- 监控集成:在部署后添加Prometheus指标采集
- 回滚机制:在Kubernetes部署步骤中添加
rollout undo
自动回滚 - 多环境配置:通过GitHub Environments管理dev/staging/prod环境
- 模型预热:在容器启动时预加载模型到显存
典型执行流程
- 开发者提交代码到
main
分支 - GitHub Actions触发测试任务:
- 通过DVC拉取最新模型
- 运行单元测试与推理验证
- 测试通过后自动构建Docker镜像
- 推送镜像到私有Registry
- 更新Kubernetes集群中的服务版本
该方案已在多个实际LLM项目中验证,可根据具体需求调整模型类型(如切换为GPT-NeoX、Bloom等)和部署环境(AWS/GCP/Azure)。建议在实施前先搭建小规模测试环境验证各环节的连通性。