MIPI入门——CSI-2介绍(一)

前面的博文中提到过,CSI旨在为高清摄像头和应用处理器之间提供一个高速的串行接口,举例来说,在目前的智能手机中的摄像头和CPU之间采用的就是CSI协议。目前来说,广泛使用的是其第二个版本CSI-2,最新的版本则是CSI-3。置于CSI-1是否存在,亦或是曾经是否存在暂时无从考证,至少在MIPI的官网是找不到CSI-1的身影了。

CSI-2协议既可以使用与DSI一致的D-PHY物理层协议,也可以使用C-PHY作为物理层协议。而CSI-3则只能使用M-PHY作为物理层协议,也就是说CSI-2和CSI-3之间是不兼容的!具体如下图:

image.png

 

需要注意的是,C-PHY和D-PHY在物理连接上存在多处不同,因此必须保证主机和从机同时使用C-PHY和D-PHY之间的一种作为物理层才能进行有效地通信。具体的差别,参见下图:

image.png

image.png

 

 

差别主要体现在时钟机制上。

显然,采用C-PHY可以获得更高的速率,这也是C-PHY的优势。但是,换一个角度思考,C-PHY只支持CSI-2,而D-PHY同时支持CSI-2和DSI,因此,从设备兼容性,硬件设计成本和灵活性等多个角度来看的话,D-PHY还是具有相当大的优势的。所以目前来说,D-PHY要用的更多一点。

举例来说,Lattice的CrossLink系列器件内部集成了两个D-PHY Harden Core,可以根据实际的需求灵活配置为CSI-2或者DSI,同时也可以使用LUT设计一个Soft Core的D-PHY。从而轻松的完成视频桥接、视频拼接等功能。具体如下:

 

 

 

 

 

基于D-PHY v1.1版本的CSI-2不同版本的性能差别如下:

image.png

 

【注】接下来文章介绍的CSI-2将以v1.1版本的为例。

### FPGA在图像处理中的应用 FPGA(现场可编程门阵列)因具备高度并行处理能力以及硬件级灵活性,在图像处理方面展现出显著优势[^1]。具体而言,这类器件能够通过定制逻辑来加速特定类型的计算密集型操作,从而提高效率。 #### 图像处理的基本原理 当涉及到具体的图像处理任务时,FPGAs可以通过配置内部结构来进行高效的像素级别数据流管理与变换。例如,在边缘检测这样的应用场景里,为了克服某些复杂运算带来的挑战——比如Canny算子中涉及的梯度方向上的插值问题——开发者通常会采取措施简化这些过程,如将除法转化为更易于实现的乘法形式[^4]。 #### 接口支持 对于连接外部设备的需求,现代FPGA提供了多种高速接口选项以适应不同类型的摄像头输入需求。常见的Camera Link、MIPI CSI-2 和 DVP (Data Video Port) 等接口使得获取原始图像成为可能;其中DVP是种相对简单易懂的选择,而对于更高性能的要求则可以选择带有MIPICSI-2软核支持的产品线[^3]。 #### 实现方法与教程推荐 针对想要深入了解如何利用FPGA进行实际项目开发的学习者来说: - **官方文档**:大多数主流供应商都会为其产品系列配备详尽的技术手册和指南,涵盖了从基础概念介绍到高级特性使用的方方面面。 - **开源社区贡献**:GitHub等平台上存在大量由爱好者分享出来的开源项目实例,它们不仅包含了完整的源码文件还附带详细的说明文档帮助新手快速入门- **在线课程平台**:诸如Coursera, Udemy之类的网站上有不少专注于嵌入式系统及数字信号处理领域的付费/免费课程可供选择学习。 ```python # 示例Python代码片段展示了个简单的灰度化函数 def grayscale_conversion(image): """Converts an RGB image to grayscale.""" gray_image = [[sum(pixel)/3 for pixel in row] for row in image] return gray_image ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简单同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值