李宏毅《机器学习》笔记-3. Where does the error come from?

1. 误差的来源

误差(error)= 偏差(bias) + 方差(variable)
在这里插入图片描述
方差(variable) s 2 = 1 N ∑ n ( x n − m ) 2 s^{2}=\frac{1}{N} \sum_{n}\left(x^{n}-m\right)^{2} s2=N1n(xnm)2
一般来说,模型越复杂,方差越大
在这里插入图片描述
偏差(bias) E [ f ∗ ] = f ‾ E\left[f^{*}\right]=\overline{f} E[f]=f
一般来说,简单的模型偏差较大,复杂的模型偏差较小
在这里插入图片描述
回想之前的例子,模型一步步变复杂的过程中,偏差一直在下降,方差一直在增加。模型也从原来的欠拟合(underfitting)变成过拟合(overfitting)

2. 解决办法

当模型不能很好地拟合训练数据的时候,则模型有较大偏差,此时很可能发生的是欠拟合。解决办法:

  1. 增加更多的特征
  2. 使用更复杂的模型

如果模型可以很好的拟合训练数据,但是在测试数据上有很大误差,那么很可能就有较大方差,此时的情况未过拟合。解决办法:

  1. 收集更多的数据
  2. 使用正则化

3. 常用的选择模型的做法

注意:千万不要用测试集上的效果做决策,否则模型在新数据上的效果会比测试集上的效果更差
建议:将训练集划分成训练集和验证集,再使用交叉验证
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值