李宏毅机器学习入门学习笔记(二)Where does the error come from

课程介绍

上节课《李宏毅·机器学习》读书笔记(一)Regression - Case Study,主要介绍了回归算法的整个演算过程。在课程最后为了改善模型,不断提升模型的复杂度,但是效果反而变差了。
在这里插入图片描述
本节课主要介绍其他改善模型的方法,并介绍交叉验证这种模型选择的方案。

Error的来源

在这里插入图片描述
从上节课测试集数据来看, A v e r a g e   E r r o r Average\ Error Average Error 随着模型复杂增加呈指数上升趋势。更复杂的模型并不能给测试集带来更好的效果,而这些 E r r o r Error Error 的主要有两个来源,分别是 b i a s bias bias v a r i a n c e variance variance

然而 b i a s bias bias v a r i a n c e variance variance 是什么?可以查看 机器学习中的Bias(偏差),Error(误差),和Variance(方差)有什么区别和联系?

估测

假设真实的模型为 f ^ \hat f f^ , 如果我们知道 f ^ \hat f f^ 模型,那是最好不过了,但是 f ^ \hat f f^ 只有 Niamtic 公司才知道。

所以我们只能通过收集 Pokemon精灵 的数据,然后通过 step1~step3 训练得到我们的理想模型 f ∗ f^* f f ∗ f^* f 其实是 f ^ \hat f f^ 的一个预估。


这个过程就像打靶, f ^ \hat f f^ 就是我们的靶心, f ∗ f^* f 就是我们投掷的结果。如上图所示, f ^ \hat f f^ f ∗ f^* f 之间蓝色部分的差距就是 b i a s bias bias v a r i a n c e variance variance 导致的。

估测变量x的偏差(bias)和方差(variance)

我们先理解一下偏差和方差是怎样计算的呢? 偏差(Bias)和方差(Variance)——机器学习中的模型选择

评估 x 的平均值

  • 假设 x x x 的平均值是 μ \mu μ,方差为 σ 2 \sigma^2 σ2

评估平均值要怎么做呢?

  • 首先拿到 N N N 个样本点: { x 1 , x 2 , ⋅ ⋅ ⋅ , x N } \{x^1,x^2,···,x^N\} {x1,x2,,xN}
  • 计算平均值 m m m, 得到 m = 1 N ∑ n x n ≠ μ m=\frac{1}{N}\sum_n x^n \neq \mu m=N1nxn̸=μ
    在这里插入图片描述

但是如果计算很多组的 m m m ,然后求 m m m 的期望:

E [ m ] = E [ 1 N ∑ x n ] = 1 N ∑ n E [ x n ] = μ E[m]=E[\frac{1}{N}\sum x^n]=\frac{1}{N}\sum_nE[x^n]=\mu E[m]=E[N1xn]=N1nE[xn]=μ

这个估计呢是无偏估计(unbiased)。

然后 m m m 分布对于 μ \mu μ 的离散程度(方差):
V a r [ m ] = σ 2 N Var[m]=\frac{\sigma^2}{N} Var[m]=Nσ2

这个取决于 N N N,下图看出 N N N 越小越离散:
在这里插入图片描述

估测变量 x 的方差(variance)

如何估算 v a r i a n c e variance variance 呢?

在这里插入图片描述

在这里插入图片描述

为什么会有很多的 f ∗ f^* f ?

讨论系列02中的案例:这里假设是在平行宇宙中,抓了不同的神奇宝贝
在这里插入图片描述

用同一个model,在不同的训练集中找到的 f ∗ f^∗ f 就是不一样的
在这里插入图片描述

这就像在靶心上射击,进行了很多组(一组多次)。现在需要知道它的散布是怎样的,将100个宇宙中的model画出来

在这里插入图片描述

不同的数据集之前什么都有可能发生—||

考虑不同 model 的 variance

一次model的variance就比较小的,也就是是比较集中,离散程度较小。而5次model 的 variance就比较大,同理散布比较广,离散程度较大。

所以用比较简单的model,variance是比较小的(就像射击的时候每次的时候,每次射击的设置都集中在一个比较小的区域内)。如果用了复杂的model,variance就很大,散布比较开。

这也是因为简单的model受到不同训练集的影响是比较小的。

考虑不同 model的 bias

在这里插入图片描述

这里没办法知道真正的 f ^ \hat{f} f^,所以假设图中的那条黑色曲线为真正的 f ^ \hat{f} f^

结果可视化,一次平均的 f ˉ \bar{f} fˉ 没有5次的好,虽然5次的整体结果离散程度很高。

一次model的bias比较大,而复杂的5次model,bias就比较小。

直观的解释:简单的model函数集的space比较小,所以可能space里面就没有包含靶心,肯定射不中。而复杂的model函数集的space比较大,可能就包含的靶心,只是没有办法找到确切的靶心在哪,但足够多的,就可能得到真正的 f¯f¯。

bias v.s. variance

在这里插入图片描述

将系列02中的误差拆分为bias何variance。简单model(左边)是bias比较大造成的error,这种情况叫做 Underfitting(欠拟合),而复杂model(右边)是variance过大造成的error,这种情况叫做Overfitting(过拟合)。

怎么判断?

分析

在这里插入图片描述

如果model没有很好的fit训练集,就是bias过大,也就是Underfitting
如果model很好的fit训练集,即再训练集上得到很小的error,但在测试集上得到大的error,这意味着model可能是variance比较大,就是Overfitting。
对于Underfitting和Overfitting,是用不同的方式来处理的

bias大,Underfitting

此时应该重新设计model。因为之前的函数集里面可能根本没有包含ff。可以:

将更多的feature加进去,比如考虑高度重量,或者HP值等等。
或者考虑更多次幂、更复杂的model。
如果此时强行再收集更多的data去训练,这是没有什么帮助的,因为设计的函数集本身就不好,再找更多的训练集也不会更好。

variance大,Overfitting

简单粗暴的方法:More data

在这里插入图片描述

但是很多时候不一定能做到收集更多的data。可以针对对问题的理解对数据集做调整(Regularization)。比如识别手写数字的时候,偏转角度的数据集不够,那就将正常的数据集左转15度,右转15度,类似这样的处理。

选择model

现在在bias和variance之间就需要一个权衡
想选择的model,可以平衡bias和variance产生的error,使得总error最小
但是下面这件事最好不要做:
在这里插入图片描述

用训练集训练不同的model,然后在测试集上比较error,model3的error比较小,就认为model3好。但实际上这只是你手上的测试集,真正完整的测试集并没有。比如在已有的测试集上error是0.5,但有条件收集到更多的测试集后通常得到的error都是大于0.5的。

Cross Validation(交叉验证)

在这里插入图片描述

图中public的测试集是已有的,private是没有的,不知道的。Cross Validation 就是将训练集再分为两部分,一部分作为训练集,一部分作为验证集。用训练集训练model,然后再验证集上比较,确实出最好的model之后(比如model3),再用全部的训练集训练model3,然后再用public的测试集进行测试,此时一般得到的error都是大一些的。不过此时会比较想再回去调一下参数,调整model,让在public的测试集上更好,但不太推荐这样。(心里难受啊,大学数模的时候就回去调,来回痛苦折腾)

上述方法可能会担心将训练集拆分的时候分的效果比较差怎么办,可以用下面的方法。

N-fold Cross Validation(N-折交叉验证)

将训练集分成N份,比如分成3份。

在这里插入图片描述

比如在三份中训练结果Average Error是model1最好,再用全部训练集训练model1。(貌似数模也干过,当年都是莫名其妙的分,想想当年数模的时候都根本来不及看是为什么,就是一股脑上去做00oo00)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值