Deformable DETR:Deformable Transformers for End-to-End Object Detection论文学习

1. 为什么提出了Deformable DETR?

因为DETR本身的计算量大,收敛速度慢。其次是小目标检测效果差。主要原因是Attention模块每次只关注一小部分采样点,导致需要很多轮数才能学习到真实需要关注的目标。

Deformable DETR注意力模块只关注一个query周围的少量关键采样点集,采样点的位置并非固定,而是可学习的。同时,受到deformable convolution(可变性卷积)的启发,认为Attention模块也可以关注更灵活的采样点,让每个位置不必和所有位置交互计算,只需要和部分(学习来的,重要的部分)进行交互即可,进而提出deformable attention模块。

2. 模型架构图

在这里插入图片描述
论文的deformable attention 模块
在这里插入图片描述
再看看基础的backbone:

保留尺寸小的特征图有利于检测大目标,保留尺寸大的特征图善于检测小目标。为此,Deformable DETR提取4个尺寸下的特征图(DETR仅1个尺寸),特征提取过程如下图:
在这里插入图片描述

3. 相比于detr,主要的改进如下:

  1. 多尺度 feature map(参考上图最左侧)
  2. Encoder部分的Muti-Head Self-Attention改为Multi-Scale Deformable Self-Attention
  3. Dncoder部分的Muti-Head Attention改为Multi-Scale Deformable Cross-Attention
  4. 让检测头prediction heads预测边界框与参考点的相对偏移量,以进一步降低优化难度。
  5. 目标数上限从100提升至300,在最后预测的时候会选择top-k前100进行预测。

此处借鉴:https://blog.csdn.net/qq_51352130/article/details/142690269一张图,和detr的结构进行对比一波。

<think>好的,我现在需要处理用户关于可变形变换器(Deformable Transformers)在端到端目标检测中的应用的问题。首先,我应该回顾一下已有的知识,确保自己理解Deformable Transformers的基本概念和它们在目标检测中的作用。 Deformable Transformers结合了可变形卷积和Transformer的优点,主要解决传统Transformer在处理高分辨率图像时计算量过大的问题。传统Transformer的自注意力机制在图像处理中需要处理大量的像素点,导致计算复杂度很高。而可变形注意力通过采样关键点,减少计算量,同时保持对物体形变的适应能力。这在目标检测中尤为重要,因为目标的位置和形状可能变化很大。 接下来,用户询问的是端到端目标检测的实现和使用。端到端检测意味着不需要后处理步骤(如非极大值抑制,NMS),直接输出检测结果。DETRDetection Transformer)是首个实现这一点的模型,但它存在收敛速度慢和对小物体检测效果差的问题。Deformable DETR通过引入可变形注意力机制,改进了这些问题,提高了训练效率和检测精度。 现在需要详细说明实现步骤。首先,数据准备部分,用户可能需要了解数据集的处理,比如使用COCO格式,并进行数据增强。然后是模型架构,包括CNN骨干网络提取特征,可变形注意力层处理特征,以及Transformer的编解码结构。在训练策略方面,学习率设置、损失函数的选择(如匈牙利算法匹配预测和真实框)是关键点。最后,推理阶段需要说明如何处理输出,生成最终的检测框。 在代码示例部分,我需要提供一个简化的实现,可能基于PyTorch和Deformable DETR的库。这里要注意引入必要的模块,如DeformableDetrTransformer,并展示模型初始化和前向传播的过程。同时,需要提到需要安装特定的库,如torch和deformable-detr。 优化技巧部分,用户可能关心如何提升模型性能。多尺度特征融合可以捕捉不同尺度的目标,尤其是小物体。调整采样点的数量和加入迭代优化机制(如两阶段可变形注意力)也是有效的方法。此外,知识蒸馏可以用于提升小模型的性能。 应用场景方面,自动驾驶、医学图像分析和工业检测都是Deformable Transformers的典型应用,需要简要说明其优势,比如处理复杂背景或高分辨率图像的能力。 最后,生成相关问题时,要考虑用户可能进一步想知道的内容,比如与传统DETR的区别、处理小物体的方法、部署到移动设备的可能性,以及训练中的常见问题和解决方案。这些问题可以帮助用户更全面地理解主题,并深入探索实际应用中的挑战。</think>### 可变形变换器(Deformable Transformers)在端到端目标检测中的应用 #### 1. 核心概念 可变形变换器结合了可变形卷积的灵活性和Transformer的全局建模能力,通过**可变形注意力机制**动态调整特征采样位置,显著降低了传统Transformer在图像处理中的计算复杂度[^1]。其核心公式为: $$ \text{DeformAttn}(z_q, x) = \sum_{k=1}^K W_k \cdot x(p_q + \Delta p_{qk}) $$ 其中$z_q$是查询特征,$\Delta p_{qk}$为可学习的偏移量,$K$为采样点数。 #### 2. 端到端实现关键步骤 1. **数据准备** - 使用COCO格式标注数据 - 增强策略:随机裁剪、颜色抖动、多尺度训练 - 特征金字塔构建(FPN)处理多尺度目标 2. **模型架构** ```python from deformable_detr import DeformableDetrTransformer model = DeformableDetrTransformer( backbone='resnet50', num_classes=80, num_queries=300, num_feature_levels=4 ) ``` 3. **训练策略** - 两阶段训练:先用CNN提取特征,再联合优化Transformer - 匈牙利匹配损失:$\mathcal{L} = \lambda_{cls}\mathcal{L}_{cls} + \lambda_{box}\mathcal{L}_{box} + \lambda_{giou}\mathcal{L}_{giou}$ - 学习率策略:初始学习率$1e^{-4}$,100 epoch后衰减10倍 #### 3. 优化技巧 - **多尺度特征融合**:在FPN的P3-P6层级部署可变形注意力 - **动态采样点分配**:根据目标尺寸自动调整采样点密度 - **迭代边界框优化**:通过3次回归逐步细化预测框 #### 4. 典型应用场景 1. **自动驾驶感知**:处理复杂街景中遮挡目标 2. **医学图像分析**:检测微小病灶(如肺结节) 3. **工业质检**:高分辨率产品缺陷定位 #### 5. 性能对比 | 指标 | DETR | Deformable DETR | |--------------|--------|-----------------| | 训练收敛速度 | 500ep | 50ep | | AP@0.5 | 42.0% | 46.5% | | 显存消耗 | 32GB | 18GB |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

l8947943

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值